Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T00:25:31.879Z Has data issue: false hasContentIssue false

A photoluminescence technique for characterizing the GaInAsP channeled substrate buried heterostructure wafer for lasing wavelength

Published online by Cambridge University Press:  31 January 2011

V. Swaminathan
Affiliation:
AT & T Bell Laboratories, Murray Hill, New Jersey 07974
C. A. Green
Affiliation:
AT & T Bell Laboratories, Murray Hill, New Jersey 07974
D. T. C. Huo
Affiliation:
AT & T Bell Laboratories, Murray Hill, New Jersey 07974
M. Brelvi
Affiliation:
AT & T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

A photoluminescence technique to characterize, for lasing wavelength, the channeled substrate buried heterostructure wafer grown for fabricating lasers for undersea transmission applications, is described. The technique consists of photopumping a piece from the as-grown wafer at 80 K to achieve lasing action and determining the lasing wavelength at 300 K after correcting for the temperature shift of the bandgap. By comparing the optically determined wavelength against the lasing wavelength measured on the device, the accuracy of the technique to predict wavelength is found to be ± 20 nm. The factors that limit the accuracy are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Wilt, D. P., Karlicek, R. F., Strege, K. E., Dautremont-Smith, W. C, Dutta, N. K., Flynn, E. J., Johnston, W. D. Jr., and Nelson, R. J., J. Appl. Phys. 56, 710 (1984); see also D. P. Wilt, J. Long, W. C. Dautremont-Smith, M. W. Focht, T. M. Shen, and R. L. Hartman, Electron. Lett. 22, 869 (1986).CrossRefGoogle Scholar
2Sankaran, R., Moon, R. L., and Antypas, G. A., J. Cryst. Growth 33, 271 (1976).CrossRefGoogle Scholar
3Rao, E. V. K., Quillec, M., Benchimol, J. L., and Thibierge, H., Appl. Phys. Lett. 37, 228 (1980).CrossRefGoogle Scholar
4Feng, M., Cook, L. W., Tashima, M. M., and Stillman, G. E., Appl. Phys. Lett. 34, 697 (1979).CrossRefGoogle Scholar
5Cook, L. W., Feng, M., Tashima, M. M., Blattner, R. J., and Stillman, G. E., Appl. Phys. Lett. 37, 173 (1980).CrossRefGoogle Scholar
6Nagai, H. and Noguchi, Y., Appl. Phys. Lett. 32, 234 (1979).CrossRefGoogle Scholar
7Henshall, G. D. and Greene, P. D., Electron. Lett. 15, 621 (1979).CrossRefGoogle Scholar
8Degani, J., Besomi, P., Wilt, D. P., Nelson, R. J., and Wilson, R. B., J. Appl. Phys. 54, 7114 (1983).CrossRefGoogle Scholar
9Hatch, C. B., Murrell, D. L., and Walling, R. H., IEE Proc. 129, 214 (1982).Google Scholar
10Gobel, E. O., in GalnAsP Alloy Semiconductors (Wiley, New York, 1982), Chap. 13, p. 313.Google Scholar
For the excitation spot (~ 1 mm in diameter) used, the maximum available power density from our Nd:YAG laser is 127 kW cm 2. However, since the ~ 2 μm wide channels cover only 0.25% of the total excitation area, the power density absorbed by the active layer (O.2yum thick) in the channels is only 93 W μm 2. This is equivalent to a current density of 80 A cm ~2. At 300 K, typical current threshold of the CSBH laser is 2-3 kA cm"2. Although, some of the current is lost as leakage through the InP homojunction (E. J. Flynn and D. A. Ackerman, private communication) it is not possible to achieve lasing action under photopumping. On the other hand, the increased radiative efficiency at 80 K facilitates photopumping since the absorbed power density is comparable to the current threshold.Google Scholar
12Burkhard, H., Dinges, H. W., and Kuphal, E., J. Appl. Phys. 53, 655 (1982).CrossRefGoogle Scholar
13Swaminathan, V., Koos, G. L., and Wilt, D. P., J. Appl. Phys. 60, 372 (1986).CrossRefGoogle Scholar
14Varshni, Y. P., Physica 34, 149 (1967).CrossRefGoogle Scholar
15Temkin, H., Keramidas, V. G., Pollack, M. A., and Wagner, W. R., J. Appl. Phys. 52, 1574 (1981).CrossRefGoogle Scholar
16Pearsall, T. P., Eaves, L., and Portal, J. C., J. Appl. Phys. 54, 1037 (1983).CrossRefGoogle Scholar
17Swaminathan, V., Donnelly, V. M., and Long, J., J. Appl. Phys. 58, 4565 (1985); see other references therein.CrossRefGoogle Scholar