Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T23:44:43.162Z Has data issue: false hasContentIssue false

Physical, fluid dynamic and mechanical properties of alumina gel-cast foams manufactured using agarose or ovalbumin as gelling agents

Published online by Cambridge University Press:  13 July 2017

Murilo Daniel de Mello Innocentini*
Affiliation:
Course of Chemical Engineering, University of Ribeirão Preto, UNAERP, Ribeirão Preto, SP 14096-900, Brazil
Victor Dias Rasteira
Affiliation:
Course of Chemical Engineering, University of Ribeirão Preto, UNAERP, Ribeirão Preto, SP 14096-900, Brazil
Marek Potoczek
Affiliation:
Faculty of Chemistry, Rzeszow University of Technology, Rzeszow 35-959, Poland
Anna Chmielarz
Affiliation:
Faculty of Chemistry, Rzeszow University of Technology, Rzeszow 35-959, Poland
Elwira Kocyło
Affiliation:
Faculty of Chemistry, Rzeszow University of Technology, Rzeszow 35-959, Poland
*
a)Address all correspondence to this author. e-mail: muriloinnocentini@yahoo.com.br
Get access

Abstract

Alumina gel-cast foams were manufactured in a broad total porosity range (43–86%) by using agarose or ovalbumin as gelling agents. The foams were examined in terms of microstructural, permeability, and mechanical properties. For the achieved open porosity level (19–85%), the mean cell size (19–375 µm), and mean window size (8–77 µm) of the alumina foams manufactured using ovalbumin were slightly wider than those obtained using agarose (34–262 µm and 18–33 µm, respectively). By using different contents of agarose (0.3–1 wt%) or albumin (5 wt%) and solids (30–45.9 wt%), it was possible to vary the foaming yield from 1.6 to 4.4 and produce bodies with a very wide permeability level that included several classes of porous ceramics. Darcian (k1) and non-Darcian (k2) permeability coefficients displayed values in the range 3.2 × 10−18 to 4.3 × 10−9 m2 and 1.8 × 10−18 to 6.5 × 10−5 m respectively. Compressive strength of bodies was dependent upon the porosity level, with a variation of 8.5–149.7 MPa.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Paolo Colombo

References

REFERENCES

Scheffler, M. and Colombo, P., eds.: Cellular Ceramics: Structure, Manufacture, Properties and Applications (Wiley-VCH, Weinheim, 2005).Google Scholar
Gibson, L.J. and Ashby, M.F.: Cellular Solids: Structure and Properties, 2nd ed. (Cambridge University Press, Cambridge, United Kingdom, 1999); pp. 1550.Google Scholar
Zhang, R., He, R., Zhou, W., Wang, Y., and Fang, D.: Design and fabrication of porous ZrO2/(ZrO2 + Ni) sandwich ceramics with low thermal conductivity and high strength. Mater. Des. 14, 16 (2014).Google Scholar
Schwartzwalder, K. and Somers, A.V.: Method of making porous ceramics articles. U.S. Patent No. 3 090 094, 1963.Google Scholar
Sepulveda, P. and Binner, J.G.P.: Processing of cellular ceramics by foaming and in situ polymerisation of organic monomers. J. Eur. Ceram. Soc. 19(12), 20592066 (1999).Google Scholar
Komarneni, S., Pach, L., and Pidugu, R.: Porous-alumina ceramics using bohemite and rice flour. Mater. Res. Soc. Symp. Proc. 371, 285290 (1995).Google Scholar
Colombo, P. and Hellmann, J.R.: Ceramic foams from preceramic polymers. Mater. Res. Innovations 6, 260272 (2002).Google Scholar
Fujiu, T., Messing, G.L., and Huebner, W.: Processing and properties of cellular silica synthesized by foaming sol–gels. J. Am. Ceram. Soc. 73, 8590 (1990).CrossRefGoogle Scholar
Green, D.J.: Fabrication and mechanical properties of lightweight ceramics produced by sintering of hollow spheres. J. Am. Ceram. Soc. 68, 403409 (1985).Google Scholar
Innocentini, M.D.M., Sepulveda, P., Salvini, V.R., and Pandolfelli, V.C.: Permeability and structure of cellular ceramics: A comparison between two preparation techniques. J. Am. Ceram. Soc. 81(12), 33493352 (1998).Google Scholar
Brezny, R. and Green, D.J.: Fracture behavior of open-cell ceramics. J. Am. Ceram. Soc. 72(7), 11451152 (1989).Google Scholar
Ortega, F.S., Sepulveda, P., and Pandolfelli, V.C.: Monomer systems for the gelcasting of foams. J. Eur. Ceram. Soc. 22, 13951401 (2002).Google Scholar
Szafran, M., Szudarska, A., and Bednarek, P.: New low-toxic water-soluble monomers for gelcasting of ceramic powders. Adv. Sci. Technol. 62, 163168 (2010).Google Scholar
Szudarska, A., Mizerski, T., and Szafran, M.: Galactose monoacrylate as a new monomer in gelcasting process. Arch. Metall. Mater. 56, 12111215 (2011).CrossRefGoogle Scholar
Dhara, S., Pradhan, M., and Bhargava, P.: Nature inspired novel processing routes for ceramic foams. Adv. Appl. Ceram. 104(1), 921 (2005).CrossRefGoogle Scholar
Dhara, S. and Bhargava, P.: A simple direct casting route to ceramic foams. J. Am. Ceram. Soc. 86(10), 16451650 (2003).Google Scholar
Lemos, A.F. and Ferreira, J.M.F.: The valence of egg white for designing smart porous biomaterials: As foaming and consolidation agent. Key Eng. Mater. 254–256, 10451050 (2004).Google Scholar
Garrn, I., Reetz, C., Brandes, N., Kroh, J.W., and Schubert, H.: Clot-forming: The use of proteins as binders for producing ceramic foams. J. Eur. Ceram. Soc. 24, 579587 (2004).Google Scholar
Prabhakaran, K., Gokhale, N.M., Sharma, S.C., and Lal, R.: A novel process for low-density alumina foams. J. Am. Ceram. Soc. 88, 26002603 (2005).CrossRefGoogle Scholar
Mouazer, R., Thijs, I., Mullens, S., and Luyten, J.: SiC foams produced by gelcasting: Synthesis and characterization. Adv. Eng. Mater. 6, 340343 (2004).Google Scholar
Potoczek, M.: Gelcasting of alumina foams using agarose solutions. Ceram. Int. 34, 661667 (2008).Google Scholar
Potoczek, M.: Hydroxyapatite foams produced by gelcasting using agarose. Mater. Lett. 62, 10551057 (2008).Google Scholar
Cosijns, A., Vervaet, C., Luyten, J., Mullens, S., Siepmann, F., Van Hoorebeke, L., Masschaele, B., Cnudde, V., and Remon, J.P.: Porous hydroxyapatite tablets as carriers for low-dosed drugs. Eur. J. Pharm. Biopharm. 67, 498506 (2006).Google Scholar
Ghomi, H., Fathi, M.H., and Edris, H.: Effect of the composition of hydroxyapatite/bioactive glass nanocomposite foams on their bioactivity and mechanical properties. Mater. Res. Bull. 47, 35233532 (2012).Google Scholar
Santacruz, I. and Moreno, R.: Preparation of cordierite materials with tailored porosity by gelcasting with polysaccharides. Int. J. Appl. Ceram. Technol. 5, 7483 (2008).CrossRefGoogle Scholar
Potoczek, M., Guzi de Moraes, E., and Colombo, P.: Ti2AlC foams produced by gelcasting. J. Eur. Ceram. Soc. 35, 24452452 (2015).CrossRefGoogle Scholar
Yin, L., Zhou, X., Yu, J., Wang, H., Zhao, S., Luo, Z., and Yang, B.: New consolidation process inspired from making steamed bread to prepare Si3N4 foams by protein foaming method. J. Eur. Ceram. Soc. 33, 13871392 (2013).Google Scholar
Stipniece, L., Narkevica, I., Sokolova, M., Locs, J., and Ozolins, J.: Novel scaffolds based on hydroxyapatite/poly(vinyl alcohol) nanocomposite coated porous TiO2 ceramics for bone tissue engineering. Ceram. Int. 42, 15301537 (2016).Google Scholar
Akhtar, F., Andersson, L., Ogunwumi, S., Hedin, N., and Bergström, L.: Structuring adsorbents and catalysts by processing of porous powders. J. Eur. Ceram. Soc. 34, 16431666 (2014).Google Scholar
Tallon, C., Yates, M., Moreno, R., and Nieto, M.I.: Porosity of freeze-dried γ-Al2O3 powders. Ceram. Int. 33, 11651169 (2007).Google Scholar
Binner, J., Chang, H., and Higginson, R.: Processing of ceramic–metal interpenetrating composites. J. Eur. Ceram. Soc. 29, 837842 (2009).Google Scholar
Ligoda-Chmiel, J., Potoczek, M., and Śliwa, R.E.: Mechanical properties of alumina foam/tri-functional epoxy resin composites with an interpenetrating network structure. Arch. Metall. Mater. 60, 27572762 (2015).Google Scholar
Innocentini, M.D.M., Coury, J.R., Fukushima, M., and Colombo, P.: High-efficiency aerosol filters based on silicon carbide foams coated with ceramic nanowires. Sep. Purif. Technol. 152, 180191 (2015).CrossRefGoogle Scholar
Vakifahmetoglu, C., Zeydanli, D., Innocentini, M.D.M., Ribeiro, F.S., Lasso, P.R.O., and Soraru, G.D.: Gradient-hierarchic-aligned porosity SiOC ceramics. Sci. Rep. 7, 41049 (2017).Google Scholar
Innocentini, M.D.M., Chacon, W.S., Caldato, R.F., Rocha, G.P., and Adabo, G.L.: Microstructural, physical, and fluid dynamic assessment of spinel-based and phosphate-bonded investments for dental applications. Int. J. Appl. Ceram. Technol. 52, 1836218372 (2013).Google Scholar
Barg, S., Innocentini, M.D.M., Meloni, R.V., Chacon, W.S., Wang, H., Koch, D., and Grathwohl, G.: Physical and high-temperature permeation features of double-layered cellular filtering membranes prepared via freeze casting of emulsified powder suspensions. J. Membr. Sci. 383, 3543 (2011).Google Scholar
Innocentini, M.D.M., Faleiros, R.K., Pisani, R. Jr., Thijs, I., Luyten, J., and Mullens, S.: Permeability of porous gelcast scaffolds for bone tissue engineering. J. Porous Mater. 17, 615627 (2010).Google Scholar
Innocentini, M.D.M., Rodrigues, V.P., Romano, R.C.O., Pileggi, R.G., Silva, G.M., and Coury, J.R.: Permeability optimization and performance evaluation of hot aerosol filters made using foam incorporated alumina suspension. J. Hazard. Mater. 162, 212221 (2008).Google Scholar
Innocentini, M.D.M., Sepulveda, P., and Ortega, F.S.: Permeability. In Cellular Ceramics: Structure, Manufacture, Properties and Applications, Scheffler, M. and Colombo, P., eds. (Wiley-VCH, Weinheim, 2005) pp. 313341.Google Scholar
Innocentini, M.D.M., Pardo, A.R.F., Salvini, V.R., and Pandolfelli, V.C.: How accurate is Darcy’s law for refractories. Am. Ceram. Soc. Bull. 78(11), 6468 (1999).Google Scholar
Innocentini, M.D.M., Pardo, A.R.F., Salvini, V.R., and Pandolfelli, V.C.: Assessment of Forchheimer’s equation to predict the permeability of ceramic foams. J. Am. Ceram. Soc. 82(7), 19451948 (1999).Google Scholar
Innocentini, M.D.M., Tanabe, E.H., Aguiar, M.L., and Coury, J.R.: Filtration of gases at high pressures: Permeation behavior of fiber-based media used for natural gas cleaning. Chem. Eng. Sci. 74, 3848 (2012).Google Scholar
Ruth, D. and Ma, D.H.: On the derivation of the Forchheimer equation by means of the averaging theorem. Transp. Porous Media 7, 255264 (1992).Google Scholar
Hlushkou, D. and Tallarek, U.: Transition from creeping via viscous-inertial to turbulent flow in fixed beds. J. Chromatogr. A 1126, 7085 (2006).Google Scholar
Zeng, Z. and Grigg, R.: A criterion for non-Darcy flow in porous media. Transp. Porous Media 63, 5769 (2006).Google Scholar
Ergun, S.: Flow through packed columns. Chem. Eng. Prog. 48(2), 8994 (1952).Google Scholar
Biasetto, L., Colombo, P., Innocentini, M.D.M., and Mullens, S.: Gas permeability of microcellular ceramic foams. Ind. Eng. Chem. Res. 46, 33663372 (2007).Google Scholar
Okada, K., Isobe, T., Katsumata, K-i., Kameshima, Y., Nakajima, A., and MacKenzie, K.J.D.: Porous ceramics mimicking nature—Preparation and properties of microstructures with unidirectionally oriented pores. Sci. Technol. Adv. Mater. 12(6), 111 (2011).Google Scholar