Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T17:32:13.010Z Has data issue: false hasContentIssue false

Physical properties of a-C: N films produced by ion beam assisted deposition

Published online by Cambridge University Press:  03 March 2011

François Rossi
Affiliation:
Commission of the European Communities, Advanced Coating Centre, P.O. Box 2, 1755 ZG Petten, The Netherlands
Bernard André
Affiliation:
CEREM, Centre d'Etudes Nucléaires de Grenoble, BP85X 38041 Grenoble Cedex, France
A. van Veen
Affiliation:
IRI, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
P.E. Mijnarends
Affiliation:
IRI, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
H. Schut
Affiliation:
IRI, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
F. Labohm
Affiliation:
IRI, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
Hugh Dunlop
Affiliation:
Pechiney CRV, BP 27 38040 Voreppe, France
Marie Paule Delplancke
Affiliation:
Service de Métallurgie et Electrochimie, Université Libre de Bruxelles, 50 Avenue Franklin Roosevelt, CP 165 1050 Bruxelles, Belgium
Kevin Hubbard
Affiliation:
Center for Materials Science, MS K765, Los Alamos National Laboratory, Los Alamos, New Mexico 87454
Get access

Abstract

Carbon films with up to 32 at. % of nitrogen have been prepared with ion beam assisted magnetron, using a N2+/N+ beam at energies between 50 and 300 eV. The composition and density of the films vary strongly with the deposition parameters. EELS, SXS, XPS, and IR studies show that these a-C: N films are mostly graphitic and have up to 20% sp3 bonding. Nitrogen is mostly combined with carbon in nitrile (C ≡ N) and imine (C=N) groups. It is shown by RBS and NDP that density goes through a maximum as the average damage energy per incoming ion increases. Positron annihilation spectroscopy shows that the void concentration in the films goes through a minimum with average damage energy. These results are consistent with a densification induced by the collisions at low average damage energy values and induced graphitization at higher damage energy values. These results are similar to what is observed for Ar ion assisted deposition of a-C films. The mechanical properties of these films have been studied with a nanoindenter, and it was found that the hardness and Young's modulus go through a maximum as the average damage energy is increased. The maximum of mechanical properties corresponds to the minimum in the void concentration in the film. Tribological studies of the a-C: N show that the friction coefficient obtained against diamond under dynamic loading decreases strongly as the nitrogen composition increases, this effect being more pronounced at low loads.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Robertson, J., Surf. Coatings Technol. 50, 185 (1992).CrossRefGoogle Scholar
2Liu, A. Y. and Cohen, M. L., Phys. Rev. B 41, 10727 (1990).CrossRefGoogle Scholar
3Chen, M. Y., Lin, X., Dravid, V. P., Chung, Y. W., Wong, M. S., and Sproul, W. D., Surf. Coatings Technol. 54/55, 360 (1992).CrossRefGoogle Scholar
4Torng, C. J., Sivertsen, J. M., Judy, J. H., and Chang, C., J. Mater. Res. 5, 2490 (1990).CrossRefGoogle Scholar
5Ricci, M., Trinquecoste, M., and Delhaes, P., Surf. Coatings Technol. 47, 299 (1991).CrossRefGoogle Scholar
6Ricci, M., Trinquecoste, M., Auguste, F., Canet, R., Delhaes, P., Guimon, C., Pfister-Guillouzo, G., Nysten, B., and Issi, J. P., J. Mater. Res. 8, 480 (1993).CrossRefGoogle Scholar
7Han, H. X. and Feldman, B. J., Solid State Commun. 65, 921 (1988).CrossRefGoogle Scholar
8Kaufman, J. H. and Metin, S., Phys. Rev. B 39, 13053 (1989).CrossRefGoogle Scholar
9Hubler, G. K., Van Vechten, D., Donovan, E. P., and Carosella, C. A., J. Vac. Sci. Technol. A8 (2), 931 (1990).Google Scholar
10Rossi, F., André, B., van Veen, A., Mijnarends, P. E., Schut, H., Delplancke, M. P., Gissler, W., Haupt, J., Lucazeau, G., and AbeMo, L., J. Appl. Phys. 75, 3121 (1994).CrossRefGoogle Scholar
11Schultz, P. J. and Lynn, K. G., Rev. Mod. Phys. 60, 701 (1988).CrossRefGoogle Scholar
12Biersack, J. P. and Haggmark, L. G., Nucl. Instrum. Methods, 174 (1980).Google Scholar
13Robertson, J., Diamond and Related Materials 2, 984 (1993).CrossRefGoogle Scholar
14Wang, Y., Chen, H., Hoffman, R. W., and Angus, J. C., J. Mater. Res. 5, 2378 (1990).CrossRefGoogle Scholar
15Ricci, M., Ph.D. Thesis, Université de Bordeaux (1992).Google Scholar
16Lascovich, J. C., Giorgi, R., and Scaglione, S., Appl. Surf. Sci. 47 (1991).CrossRefGoogle Scholar
17Ramsteiner, M. and Wagner, J., Appl. Phys. Lett. 51, 1355 (1987).CrossRefGoogle Scholar
18Richter, A., Scheibe, H-J., Pompe, W., Brzezinka, K-W., and Muhling, I., J. Non-Cryst. Solids 88, 131 (1986).CrossRefGoogle Scholar
19Cho, N-H., Krishnan, K. M., Veirs, D. K., Rubin, M. D., Hopper, C. B., Bhushan, B., and Bogy, D. B., J. Mater. Res. 5, 2543 (1990).CrossRefGoogle Scholar
20Cho, N. H., Veirs, D. K., Ager, J. W. III, Rubin, M. B., Hopper, C. B., and Bogy, D. B., J. Appl. Phys. 71, 2243 (1992).CrossRefGoogle Scholar
21Kaufman, J. H., Metin, S., and Saperstein, D. D., Phys. Rev. B 39, 13053 (1989).CrossRefGoogle Scholar
22Nemanich, R. J. and Solin, S. A., Phys. Rev. B 20, 392 (1979).CrossRefGoogle Scholar
23Tuinstra, F. and Koenig, J. L., J. Chem. Phys. 53, 1126 (1970).CrossRefGoogle Scholar
24Lespade, P., Al-Jishi, R., and Dresselhaus, M. S., Carbon 20, 427 (1982).CrossRefGoogle Scholar
25Jiang, X., Zou, J. W., Reichelt, K., and Grünberg, J., J. Appl. Phys. 66, 4729 (1989).CrossRefGoogle Scholar
26Dunlop, E., Haupt, J., Schmidt, K., and Gissler, W., Diamond and Related Materials 1, 644 (1992).CrossRefGoogle Scholar
27Taube, K., Ph.D. Dissertation, Universität Hamburg (1991).Google Scholar
28Advanced Techniques for Surface Engineering, edited by Gissler, W. and Jehn, H. A. (ECSC Brussels and Luxembourg, 1992).CrossRefGoogle Scholar
29André, B., Ph.D. Thesis, INPG Grenoble (1991).Google Scholar
30Müller, K. H., Phys. Rev. B 35 (15), 7906 (1987).CrossRefGoogle Scholar
31Kaukonen, H-P. and Nieminen, R. M., Phys. Rev. Lett. 68, 620 (1992).CrossRefGoogle Scholar
32Tamor, M. A. and Wu, C. H., J. Appl. Phys. 67, 1007 (1990).CrossRefGoogle Scholar
33Prawer, S., Kalish, R., Adel, M., and Richter, V., J. Appl. Phys. 61, 4492 (1987).CrossRefGoogle Scholar