Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T19:09:29.310Z Has data issue: false hasContentIssue false

Physical properties of amorphous silicon-carbon alloys produced by different techniques

Published online by Cambridge University Press:  31 January 2011

A. Carbone
Affiliation:
Dipartimento di Fisica del Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
F. Demichelis
Affiliation:
Dipartimento di Fisica del Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
G. Kaniadakis
Affiliation:
Dipartimento di Fisica del Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
G. Della Mea
Affiliation:
Dipartimento di Ingegneria dei Materiali, Universitá di Trento e Unitá, I.N.F.N. Padova, Italy
F. Freire
Affiliation:
Dipartimento di Ingegneria dei Materiali, Universitá di Trento e Unitá, I.N.F.N. Padova, Italy
P. Rava
Affiliation:
Elettrorava S.p.A. 10040 Savonera, Torino, Italy
Get access

Abstract

Results of a study of compositional, optical, electrical, and structural properties of hydrogen amorphous silicon carbide (a-SiC:H) prepared, respectively, by glow-discharge (GD) and reactive sputtering (SP) techniques at power densities varying between 1.25 · 10−2 and 1.25 · 10−1 W · cm−2 for GD samples are presented. Measurements are reported on the composition, optical and IR spectroscopy, and on the temperature dependence of electrical conductivity. All experimental observations suggest that the power density only slightly affects the physical properties of GD silicon-rich samples, whereas those of the carbon-rich SP samples depend more strongly on this deposition parameter. Finally, it is shown that the GD technique can provide films with better characteristics, whereas samples of similar composition prepared by sputtering have higher compositional disorder and are more inhomogeneous.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Kuwano, Y., Ohnishi, M., Nishiwaski, H., Tsuda, S., Fukatsu, T., Enomoto, K., Nakashima, Y., and Tazni, H., 16th IEEE PV Spec Conference, San Diego, CA (IEEE, New York, 1982), p. 1331.Google Scholar
2Munekata, H. and Kukimoto, H., Appl. Phys. Lett. 42, 432 (1983).CrossRefGoogle Scholar
3Pezzin, J., Solomon, I., Bourdon, B., Fontenille, J., and Ligeon, E., Thin Solid Films 62, 327 (1979).Google Scholar
4Schmidt, M. P., Bullot, J., Gauthier, M., Cordier, P., Solomon, I., and Tran-Quoc, H., Philos. Mag. B 51, 581 (1985).CrossRefGoogle Scholar
5Anderson, D. A. and Spear, W. E., Philos. Mag. B 35, 1 (1977).CrossRefGoogle Scholar
6Bullot, J. and Schmidt, M. P., Phys. Status Solidi (B) 143, 345 (1987).CrossRefGoogle Scholar
7Schmidt, M. P., Solomon, I., Tran-Quoc, H., and Bullot, J., J. Non-Cryst. Solids 77–78, 849 (1985).CrossRefGoogle Scholar
8Demichelis, F., Kaniadakis, G., Tagliaferro, A., and Tresso, E., Appl. Opt. 26, 1717 (1987).CrossRefGoogle Scholar
9Mahan, A. H., von, B. Roedern, Williamson, D. L., and Madan, A., J. Appl. Phys. 57, 8 (1985).CrossRefGoogle Scholar
10Paul, W. and Anderson, D., Solar Energy Materials 5, 229 (1981).CrossRefGoogle Scholar
11Robertson, J., Adv. Phys. 35, 4, 317 (1986).CrossRefGoogle Scholar
12Brodsky, M. H., Cardona, M., and Cuomo, J. J., Phys. Rev. B 16, 3556 (1977).CrossRefGoogle Scholar
13Freeman, E. C. and Paul, W., Phys. Rev. B 18, 4288 (1978).CrossRefGoogle Scholar
14Dishler, B., Proc. 7th Int. Symp. on Plasma Chemistry (Eindhoven July 1985), Vol. I, p. 45.Google Scholar
15Demichelis, F., Kaniadakis, G., Mezzetti, E., Mpawenayo, P., Tagliaferro, A., Tresso, E., Rava, P., and Delia Mea, G., Nuovo Ci-mento 9D, 393 (1987).CrossRefGoogle Scholar
16Moustakas, T. D., Semiconductors and Semimetals, edited by Pankove, J. (Academic Press, New York, 1984), Vol. 21, p. 55.Google Scholar