Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-01T00:17:12.141Z Has data issue: false hasContentIssue false

Physical response of gold nanoparticles to single self-ion bombardment

Published online by Cambridge University Press:  23 September 2014

Daniel C. Bufford*
Affiliation:
Radiation-Solid Interactions, Sandia National Laboratories, Albuquerque, NM 87185, USA
Khalid Hattar*
Affiliation:
Radiation-Solid Interactions, Sandia National Laboratories, Albuquerque, NM 87185, USA
*
a)Address all correspondence to this author. e-mail: khattar@sandia.gov
Get access

Abstract

The reliability of nanomaterials depends on maintaining their specific sizes and structures. However, the stability of many nanomaterials in radiation environments remains uncertain due to the lack of a fully developed fundamental understanding of the radiation response on the nanoscale. To provide an insight into the dynamic aspects of single ion effects in nanomaterials, gold nanoparticles (NPs) with nominal diameters of 5, 20, and 60 nm were subjected to self-ion irradiation at energies of 46 keV, 2.8 MeV, and 10 MeV in situ inside of a transmission electron microscope. Ion interactions created a variety of far-from-equilibrium structures including small (∼1 nm) sputtered nanoclusters from the parent NPs of all sizes. Single ions created surface bumps and elongated nanofilaments in the 60 nm NPs. Similar shape changes were observed in the 20 nm NPs, while the 5 nm NPs were transiently melted or explosively broken apart.

Type
Invited Feature Papers
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper has been selected as an Invited Feature Paper.

References

REFERENCES

Daniel, M.C. and Astruc, D.: Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104(1), 293 (2004).Google Scholar
Nastasi, M.A., Mayer, J.W., and Hirvonen, J.K.: Ion-Solid Interactions: Fundamentals and Applications (Cambridge University Press, Cambridge, New York, 1996); pp. xxvi.Google Scholar
Schwank, J.R., Shaneyfelt, M.R., and Dodd, P.E.: Radiation hardness assurance testing of microelectronic devices and integrated circuits: Radiation environments, physical mechanisms, and foundations for hardness assurance. IEEE Trans. Nucl. Sci. 60(3), 2074 (2013).Google Scholar
Auciello, O. and Kelly, R.: Ion Bombardment Modification of Surfaces: Fundamentals and Applications (Elsevier Science Publishers, New York, 1984); pp. xvii.Google Scholar
Dmitrieva, O., Rellinghaus, B., Kastner, J., Liedke, M.O., and Fassbender, J.: Ion beam induced destabilization of icosahedral structures in gas phase prepared FePt nanoparticles. J. Appl. Phys. 97(10), 10N112 (2005).Google Scholar
Rizza, G., Cheverry, H., Gacoin, T., Lamasson, A., and Henry, S.: Ion beam irradiation of embedded nanoparticles: Toward an in situ control of size and spatial distribution. J. Appl. Phys. 101(1), 014321 (2007).Google Scholar
Dhara, S.: Formation, dynamics, and characterization of nanostructures by ion beam irradiation. Crit. Rev. Solid State Mater. Sci. 32(12), 1 (2007).Google Scholar
Ramjauny, Y., Rizza, G., Perruchas, S., Gacoin, T., and Botha, R.: Controlling the size distribution of embedded Au nanoparticles using ion irradiation. J. Appl. Phys. 107(10), 104303 (2010).Google Scholar
Bufford, D., Pratt, S.H., Boyle, T.J., and Hattar, K.: In situ TEM ion irradiation and implantation effects on Au nanoparticle morphologies. Chem. Commun. 50(57), 7593 (2014).Google Scholar
Krasheninnikov, A.V. and Nordlund, K.: Ion and electron irradiation-induced effects in nanostructured materials. J. Appl. Phys. 107(7), 071301 (2010).Google Scholar
Nordlund, K. and Djurabekova, F.: Multiscale modelling of irradiation in nanostructures. J. Comput. Electron. 13(1), 122 (2014).Google Scholar
Kissel, R. and Urbassek, H.M.: Sputtering from spherical Au clusters by energetic atom bombardment. Nucl. Instrum. Methods Phys. Res., Sect. B 180, 293 (2001).CrossRefGoogle Scholar
Zimmermann, S. and Urbassek, H.M.: Sputtering of nanoparticles: Molecular dynamics study of Au impact on 20 nm sized Au nanoparticles. Int. J. Mass Spectrom. 272(1), 91 (2008).Google Scholar
Zhurkin, E.E.: Study of gold nanocluster sputtering under 38-keV Au ion bombardment by a classical molecular dynamics method. J. Surf. Invest.: X-Ray, Synchrotron Neutron Techn. 2(2), 193 (2008).Google Scholar
Jarvi, T.T. and Nordlund, K.: Sputtering of freestanding metal nanocrystals. Nucl. Instrum. Methods Phys. Res., Sect. B 272, 66 (2012).CrossRefGoogle Scholar
Jarvi, T.T., Kuronen, A., Nordlund, K., and Albe, K.: Structural modification of a multiply twinned nanoparticle by ion irradiation: A molecular dynamics study. J. Appl. Phys. 102(12), 124304 (2007).Google Scholar
Borschel, C. and Ronning, C.: Ion beam irradiation of nanostructures - A 3D Monte Carlo simulation code. Nucl. Instrum. Methods Phys. Res., Sect. B 269(19), 2133 (2011).Google Scholar
Wiedwald, U., Klimmer, A., Kern, B., Han, L., Boyen, H.G., Ziemann, P., and Fauth, K.: Lowering of the L1(0) ordering temperature of FePt nanoparticles by He+ ion irradiation. Appl. Phys. Lett. 90(6), 062508 (2007).Google Scholar
Jarvi, T.T., Pohl, D., Albe, K., Rellinghaus, B., Schultz, L., Fassbender, J., Kuronen, A., and Nordlund, K.: From multiply twinned to fcc nanoparticles via irradiation-induced transient amorphization. EPL 85(2), 1 (2009).CrossRefGoogle Scholar
Baranov, I., Kirillov, S., Novikov, A., Obnorskii, V., Toulemonde, M., Wien, K., Yarmiychuk, S., Borodin, V.A., and Volkov, A.E.: Desorption of gold nanoclusters (2-150 nm) by 1 GeV Pb ions. Nucl. Instrum. Methods Phys. Res., Sect. B 230, 495 (2005).Google Scholar
Hinks, J.A.: A review of transmission electron microscopes with in situ ion irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 267(2324), 3652 (2009).Google Scholar
Birtcher, R.C., Donnelly, S.E., and Schlutig, S.: Nanoparticle ejection from Au induced by single Xe ion impacts. Phys. Rev. Lett. 85(23), 4968 (2000).Google Scholar
Birtcher, R.C., Donnelly, S.E., and Schlutig, S.: Nanoparticle ejection from gold during ion irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 215(12), 69 (2004).Google Scholar
Birtcher, R.C. and Donnelly, S.E.: Plastic flow induced by single ion impacts on gold. Phys. Rev. Lett. 77(21), 4374 (1996).Google Scholar
Greaves, G., Hinks, J.A., Busby, P., Mellors, N.J., Ilinov, A., Kuronen, A., Nordlund, K., and Donnelly, S.E.: Enhanced sputtering yields from single-ion impacts on gold nanorods. Phys. Rev. Lett. 111(6), 1 (2013).Google Scholar
Hattar, K., Bufford, D., and Buller, D.L.: Concurrent in situ ion irradiation transmission electron microscope. Nucl. Instrum. Methods Phys. Res., Sect. B 338, 5665 (2014).CrossRefGoogle Scholar
Chen, Y., Palmer, R.E., and Wilcoxon, J.P.: Sintering of passivated gold nanoparticles under the electron beam. Langmuir 22(6), 2851 (2006).Google Scholar
Kremer, J.R., Mastronarde, D.N., and McIntosh, J.R.: Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116(1), 71 (1996).Google Scholar
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E.: UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605 (2004).Google Scholar
Ziegler, J.F., Ziegler, M.D., and Biersack, J.P.: SRIM - The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res., Sect. B 268(1112), 1818 (2010).Google Scholar
Nordlund, K., Ghaly, M., Averback, R.S., Caturla, M., de la Rubia, T.D., and Tarus, J.: Defect production in collision cascades in elemental semiconductors and fcc metals. Phys. Rev. B 57(13), 7556 (1998).Google Scholar
Ghaly, M., Nordlund, K., and Averback, R.S.: Molecular dynamics investigations of surface damage produced by kiloelectronvolt self-bombardment of solids. Philos. Mag. A 79(4), 795 (1999).CrossRefGoogle Scholar
Merkle, K.L. and Jager, W.: Direct observation of spike effects in heavy-ion sputtering. Philos. Mag. A 44(4), 741 (1981).Google Scholar

Bufford and Hattar supplementary movie

Movie 1

Download Bufford and Hattar supplementary movie(Video)
Video 14.6 MB

Bufford and Hattar supplementary movie

Movie 10

Download Bufford and Hattar supplementary movie(Video)
Video 3.4 MB

Bufford and Hattar supplementary movie

Movie 2

Download Bufford and Hattar supplementary movie(Video)
Video 26.1 MB

Bufford and Hattar supplementary movie

Movie 3

Download Bufford and Hattar supplementary movie(Video)
Video 4.2 MB

Bufford and Hattar supplementary movie

Movie 4

Download Bufford and Hattar supplementary movie(Video)
Video 7.5 MB

Bufford and Hattar supplementary movie

Movie 5

Download Bufford and Hattar supplementary movie(Video)
Video 11.2 MB

Bufford and Hattar supplementary movie

Movie 6

Download Bufford and Hattar supplementary movie(Video)
Video 4.6 MB

Bufford and Hattar supplementary movie

Movie 7

Download Bufford and Hattar supplementary movie(Video)
Video 2.2 MB

Bufford and Hattar supplementary movie

Movie 8

Download Bufford and Hattar supplementary movie(Video)
Video 6.8 MB

Bufford and Hattar supplementary movie

Movie 9

Download Bufford and Hattar supplementary movie(Video)
Video 14.7 MB