Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-29T06:32:50.984Z Has data issue: false hasContentIssue false

Platform for in-plane ZT measurement and Hall coefficient determination of thin films in a temperature range from 120 K up to 450 K

Published online by Cambridge University Press:  27 October 2016

Vincent Linseis*
Affiliation:
Institute of Nanostructure and Solid State Physics, Universität Hamburg, Hamburg 20355, Germany
Friedemann Völklein
Affiliation:
Institute for Microtechnologies, RheinMain University of Applied Sciences Wiesbaden, Ruesselsheim 65428, Germany
Heiko Reith
Affiliation:
Institute of Nanostructure and Solid State Physics, Universität Hamburg, Hamburg 20355, Germany; and Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Dresden 01171, Germany
Peter Woias
Affiliation:
Department of Microsystems Engineering–IMTEK, University of Freiburg, Freiburg 79110, Germany
Kornelius Nielsch
Affiliation:
Institute of Nanostructure and Solid State Physics, Universität Hamburg, Hamburg 20355, Germany; and Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Dresden 01171, Germany
*
a) Address all correspondence to this author. e-mail: vlinseis@physnet.uni-hamburg.de
Get access

Abstract

The characterization of nanostructured samples with at least one restricted dimension like thin films or nanowires is challenging but important to understand their structure and transport mechanism and to improve current industrial products and production processes. We report on the development of a chip-based platform to simultaneously measure the in-plane electrical and thermal conductivity, the Seebeck coefficient as well as the Hall constant of a thin film in the temperature range from 120 K up to 450 K and in a magnetic field of up to 1 T. Due to the design of the setup, time consuming preparation steps can be omitted and a nearly simultaneous measurement of the sample properties is achieved. Typical errors caused by different sample compositions, varying sample geometries, and different heat profiles are avoided with the presented measurement method. As a showcase study displaying the validity and accuracy of our system, we present measurements of the thermoelectric properties of a 110 nm Bi87Sb13 thin film in the temperature range from 120 K up to 450 K.

Type
Invited Papers
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Burke, A.M., Carrad, D.J., Gluschke, J.G., Storm, K., Fahlvik Svensson, S., Linke, H., Samuelson, L., and Micolich, A.P.: InAs nanowire transistors with multiple, independent wrap-gate segments. Nano Lett. 15(5), 28362843 (2015).CrossRefGoogle ScholarPubMed
Goldsmid, H.J. and Douglas, R.W.: The use of semiconductors in thermoelectric refrigeration. Br. J. Appl. Phys. 5(11), 386 (1954).CrossRefGoogle Scholar
Shakouri, A.: Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41(1), 399431 (2011).CrossRefGoogle Scholar
Shakouri, A. and Zebarjadi, M.: Nanoengineered materials for thermoelectric energy conversion. In Thermal Nanosystems and Nanomaterials, Topics in Applied Physics, Vol. 118, Volz, S. ed.; Springer: Berlin, Heidelberg, Germany, 2009; pp. 225299.CrossRefGoogle Scholar
Nielsch, K., Bachmann, J., Kimling, J., and Böttner, H.: Thermoelectric nanostructures: From physical model systems towards nanograined composites. Adv. Energy Mater. 1(5), 713731 (2011).CrossRefGoogle Scholar
Hicks, L.D. and Dresselhaus, M.S.: Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B: Condens. Matter Mater. Phys. 47(19), 1272712731 (1993).CrossRefGoogle ScholarPubMed
Dames, C.: Measuring the thermal conductivity of thin films: 3 omega and related electrothermal methods. Annu. Rev. Heat Transfer 16(16), 749 (2013).CrossRefGoogle Scholar
Bahk, J-H., Favaloro, T., and Shakouri, A.: Thin film thermoelectric characterization techniques. Annu. Rev. Heat Transfer 16(1), 5199 (2013).CrossRefGoogle Scholar
Zastrow, S., Gooth, J., Boehnert, T., Heiderich, S., Toellner, W., Heimann, S., Schulz, S., and Nielsch, K.: Thermoelectric transport and Hall measurements of low defect Sb2Te3 thin films grown by atomic layer deposition. Semicond. Sci. Technol. 28(3), 35010 (2013).CrossRefGoogle Scholar
Van der Pauw, L.J.: A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape. Philips Tech. Rev. 20(8), 220224 (1958).Google Scholar
Chen, G., Yang, B., Liu, W.L., Borca-Tasciuc, T., Song, D., Achimov, D., and Dresselhaus, M.S.: Thermoelectric property characterization of low-dimensional structures. In Proceedings of the XX International Conference on Thermoelectrics (IEEE, Beijing, 2001); pp. 3034.Google Scholar
Yang, B., Liu, J.L., Wang, K.L., and Chen, G.: Simultaneous measurements of Seebeck coefficient and thermal conductivity across superlattice. Appl. Phys. Lett. 80(10), 17581760 (2002).CrossRefGoogle Scholar
Zink, B.L. and Hellman, F.: Specific heat and thermal conductivity of low-stress amorphous Si–N membranes. Solid State Commun. 129(3), 199204 (2004).CrossRefGoogle Scholar
Sultan, R., Avery, A.D., Stiehl, G., and Zink, B.L.: Thermal conductivity of micromachined low-stress silicon-nitride beams from 77 to 325 K. J. Appl. Phys. 105(4), 43501 (2009).CrossRefGoogle Scholar
Cahill, D.G.: Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev. Sci. Instrum. 61(2), 802808 (1990).CrossRefGoogle Scholar
Sikora, A., Ftouni, H., Richard, J., Hébert, C., Eon, D., Omnès, F., and Bourgeois, O.: Highly sensitive thermal conductivity measurements of suspended membranes (SiN and diamond) using a 3ω-Völklein method. Rev. Sci. Instrum. 83(5), 54902 (2012).CrossRefGoogle ScholarPubMed
Cahill, D.G., Katiyar, M., and Abelson, J.R.: Thermal conductivity of α-Si:H thin films. Phys. Rev. B: Condens. Matter Mater. Phys. 50(9), 60776081 (1994).CrossRefGoogle Scholar
Ju, Y.S., Kurabayashi, K., and Goodson, K.E.: Thermal characterization of anisotropic thin dielectric films using harmonic Joule heating. Thin Solid Films 339(1–2), 160164 (1999).CrossRefGoogle Scholar
Hapenciuc, C.L., Khan, F.J., Borca-Tasciuc, T., and Wang, G-C.: Development of experimental techniques for thermoelectric properties characterization of low-dimensional structures, in Thermoelectric Materials 2003-Research and Applications, edited by Hogan, T.P., Johnson, D.C., Nolas, G.S., and Yang, J. (Mater. Res. Soc. Symp. Proc. 793, Boston, MA, 2003) p. S7.5.1.CrossRefGoogle Scholar
Singh, R., Bian, Z., Shakouri, A., Zeng, G., Bahk, J-H., Bowers, J.E., Zide, J.M.O., and Gossard, A.C.: Direct measurement of thin-film thermoelectric figure of merit. Appl. Phys. Lett. 94(21), 212508 (2009).CrossRefGoogle Scholar
Singh, R., Bian, Z., Zeng, G., Zide, J., Christofferson, J., Chou, H-F., Gossard, A., Bowers, J., and Shakouri, A.: Transient Harman measurement of the cross-plane ZT of InGaAs/InGaAlAs superlattices with embedded ErAs nanoparticles, in Materials and Technologies for Direct Thermal-to-Electric Energy Conversion, edited by Yang, J., Hogan, T.P., Funahashi, R., and Nolas, G.S. (Mater. Res. Soc. Symp. Proc. 886, Boston, MA, 2005) p. 0886-F04.CrossRefGoogle Scholar
Bian, Z., Zhang, Y., Schmidt, H., and Shakouri, A.: Thin film ZT characterization using transient Harman technique. In Proceedings of the 24th International Conference on Thermoelectrics (Clemson, SC, USA, 2005); pp. 7678.Google Scholar
Völklein, F., Reith, H., and Meier, A.: Measuring methods for the investigation of in-plane and cross-plane thermal conductivity of thin films. Phys. Status Solidi A 210(1), 106118 (2013).CrossRefGoogle Scholar
Völklein, F.: Thermal conductivity and diffusivity of a thin film SiO2-Si3N4 sandwich system. Thin Solid Films 188(1), 2733 (1990).CrossRefGoogle Scholar
Stärz, T., Schmidt, U., and Völklein, F.: Microsensor for in situ thermal conductivity measurements of thin films. Sens. Mater. 7(6), 395403 (1995).Google Scholar
Sikora, A., Ftouni, H., Richard, J., Hébert, C., Eon, D., Omnès, F., and Bourgeois, O.: Erratum: “Highly sensitive thermal conductivity measurements of suspended membranes (SiN and diamond) using a 3ω-Völklein method” [Rev. Sci. Instrum. 83, 054902 (2012)]. Rev. Sci. Instrum. 84(2), 29901 (2013).CrossRefGoogle Scholar
Ftouni, H., Tainoff, D., Richard, J., Lulla, K., Guidi, J., Collin, E., and Bourgeois, O.: Specific heat measurement of thin suspended SiN membrane from 8 K to 300 K using the 3ω-Völklein method. Rev. Sci. Instrum. 84(9), 94902 (2013).CrossRefGoogle ScholarPubMed
Völklein, F. and Kessler, E.: Thermoelectric properties of Bi1−x Sb x films with 0 < x ≤ 0.3. Thin Solid Films 155(2), 197208 (1987).CrossRefGoogle Scholar
Völklein, F. and Kessler, E.: Thermal conductivity and thermoelectric figure of merit of Bi1−x Sb x films with 0 < x ≤ 0.3. Phys. Status Solidi B 143(1), 121130 (1987).CrossRefGoogle Scholar
Völklein, F. and Dillner, U.: Mobilities and concentrations of charge carriers in polycrystalline Bi0.87Sb0.13 films. Phys. Status Solidi B 162(1), 147153 (1990).CrossRefGoogle Scholar
Coutts, T.J., Young, D.L., Li, X., Mulligan, W.P., and Wu, X.: Search for improved transparent conducting oxides: A fundamental investigation of CdO, Cd2SnO4, and Zn2SnO4 . J. Vac. Sci. Technol., A 18(6), 26462660 (2000).CrossRefGoogle Scholar
Kaydanov, V.I., Coutts, T.J., and Young, D.L.: Studies of band structure and free carrier scattering in transparent conducting oxides based on combined measurements of electron transport phenomena. Material Research Society Workshop (Denver, CO, 2000).Google Scholar
Mulligan, W.P. and Coutts, T.J.: Measurement of the effective mass of transparent conducting films of cadmium tin oxide, in Flat Panel Display Materials III, edited by Parsons, G., Fulks, R., Slobodin, D., and Yuzuriha, T. (Mater. Res. Soc. Symp. Proc. 471, Boston, MA, 1997) p. 117.Google Scholar
Young, D.L., Coutts, T.J., Kaydanov, V.I., Gilmore, A.S., and Mulligan, W.P.: Direct measurement of density-of-states effective mass and scattering parameter in transparent conducting oxides using second-order transport phenomena. J. Vac. Sci. Technol., A 18(6), 29782985 (2000).CrossRefGoogle Scholar