Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T01:57:43.722Z Has data issue: false hasContentIssue false

Platinum nanoparticle-functionalized tin dioxide nanowires via radiolysis and their sensing capability

Published online by Cambridge University Press:  24 May 2012

Sun-Woo Choi
Affiliation:
School of Materials Science and Engineering, Inha University, Incheon 402-751, Republic of Korea
Sang Sub Kim*
Affiliation:
School of Materials Science and Engineering, Inha University, Incheon 402-751, Republic of Korea
*
a)Address all correspondence to this author. e-mail: sangsub@inha.ac.kr
Get access

Abstract

Platinum (Pt) nanoparticles were synthesized on tin dioxide (SnO2) nanowires by applying γ-ray radiolysis. The growth behavior of Pt nanoparticles was systematically investigated as a function of precursor concentration, illumination intensity and exposure time of the γ-rays. We found that these processing parameters greatly influenced the growth behavior of Pt nanoparticles in terms of size and formation density. Vapor-phase-grown SnO2 nanowires were uniformly covered with Pt nanoparticles by the radiolysis process. The Pt nanoparticle-functionalized SnO2 nanowires were tested as sensors for detecting reductive gases including carbon monoxide, toluene, and benzene. The results indicate that the γ-ray radiolysis is an efficient way of functionalizing the surface of oxide nanowires with catalytic Pt nanoparticles.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kundu, S., Panigrahi, S., Praharaj, S., Basu, S., Ghosh, S.K., Pal, A., and Pal, T.: Anisotropic growth of gold clusters to gold nanocubes under UV irradiation. Nanotechnology 18, 075712 (2007).Google Scholar
2.Scaffardi, L.B., Pellegri, N., Sanceis, O., and Tocho, J.O.: Sizing gold nanoparticles by optical extinction spectroscopy. Nanotechnology 16, 158 (2005).CrossRefGoogle Scholar
3.Lung, J-K., Huang, J-C., Tien, D-C., Liao, C-Y., Tseng, K-H., Tsung, T-T., Kao, W-S., Tasi, T-H., Jwo, C-S., Lin, H-M., and Stobinski, L.: Preparation of gold nanoparticles by arc discharge in water. J. Alloys Compd. 434435, 655 (2007).Google Scholar
4.Henglein, A. and Meisel, D.: Radiolytic control of the size of colloidal gold nanoparticles. Langmuir 14, 7392 (1998).CrossRefGoogle Scholar
5.Mizukoshi, Y., Seino, S., Okitsu, K., Kinoshita, T., Otome, Y., Nakagawa, T., and Yamamoto, T.A.: Sonochemical preparation of composite nanoparticles of Au/γ-Fe2O3 and magnetic separation of glutathione. Ultrason. Sonochem. 12, 191 (2001).Google Scholar
6.Henglein, A.: Radiolytic preparation of ultrafine colloidal gold particles in aqueous solution: Optical spectrum, controlled growth, and some chemical reactions. Langmuir 15, 6738 (1999).Google Scholar
7.Henglein, A.: Reduction of Ag(CN)2 on silver and platinum colloidal nanoparticles. Langmuir 17, 2329 (2001).Google Scholar
8.Seino, S., Kusunose, T., and Sekino, T.: Synthesis of gold/magnetic iron oxide composite nanoparticles for biomedical applications with good dispersibility. J. Appl. Phys. 99, 08H101 (2006).CrossRefGoogle Scholar
9.Chwieroth, B., Patton, B.R., and Wang, Y.: Conduction and gas-surface reaction modeling in metal oxide gas sensors. J. Electroceram. 6, 27 (2001).Google Scholar
10.Kim, S.S., Park, J.Y., Choi, S-W., Kim, H.S., Na, H.G., Yang, J.C., and Kim, H.W.: Significant enhancement of the sensing characteristics of In2O3 nanowires by functionalization with Pt nanoparticles. Nanotechnology 21, 415502 (2010).Google Scholar
11.Yamazoe, N.: Toward innovations of gas sensor technology. Sens. Actuators B 108, 2 (2005).CrossRefGoogle Scholar
12.Neri, G., Bonavita, A., Micali, G., Rizzo, G., Pinna, N., and Niederberger, M.: In2O3 and Pt-In2O3 nanopowders for low temperature oxygen sensors. Sens. Actuators B 127, 455 (2007).Google Scholar
13.Choi, J-K., Hwang, I-S., Kim, S-J., Park, J-S., Park, S-S., Jeong, U., Kang, Y.C., and Lee, J-H.: Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers. Sens. Actuators, B 150, 191 (2010).CrossRefGoogle Scholar
14.Gamez, A., Richard, D., Gallezot, P., Gloguen, F., Faure, R., and Durand, R.: Oxygen reduction on well-defined platinum nanoparticles inside recast ionomer. Electrochim. Acta 41, 307 (1996).CrossRefGoogle Scholar
15.Antoine, O., Bultel, Y., and Durand, R.: Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside nafion. J. Electroanal. Chem. 499, 85 (2001).Google Scholar
16.Hrapovic, S., Liu, Y.L., Male, K.B., and Luong, J.H.T.: Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal. Chem. 76, 1083 (2004).CrossRefGoogle ScholarPubMed
17.Ikariyama, Y., Yamaguchi, S., Yukiashi, T., and Ushioda, H.: One-step fabrication of microbiosensor prepared by the codeposition of enzyme and platinum particles. Anal. Lett. 20, 1791 (1987).Google Scholar
18.Zhou, W., Xu, L., Wu, M., Xu, L., and Wang, E.: Determination of hydrazines by capillary zone electrophoresis with amperometric detection at a platinum particles-modified carbon fibre microelectrode. Anal. Chim. Acta 299, 189 (1994).Google Scholar
19.Attand, G.S., Barlett, P.N., Coleman, N.R.B., Elliot, J.M., Owen, J.R., and Wang, J.H.: Mesoporous platinum films from lyotropic liquid crystalline phases. Science 278, 838 (1997).Google Scholar
20.Birkin, P.R., Elliot, J.M., and Watson, Y.E.: Electrochemical reduction of oxygen on mesoporous platinum microelectrodes. Chem. Commun. 17, 1693 (2000).Google Scholar
21.Yogi, C., Kojima, K., Takai, T., and Wada, N.: Photocatalytic degradation of methylene blue by Au-deposited TiO2 film under UV irradiation. J. Mater. Sci. 44, 821 (2009).CrossRefGoogle Scholar
22.Choi, S-W., Jung, S-H., and Kim, S.S.: Functionalization of selectively grown networked SnO2 nanowires with Pd nanodots by γ-ray radiolysis. Nanotechnology 22, 225501 (2011).Google Scholar
23.Park, J.Y., Choi, S-W., and Kim, S.S.: Junction-tuned SnO2 nanowires and their sensing properties. J. Phys. Chem. C 115, 12774 (2011).Google Scholar
24.Ershov, G. and Henglein, A.: Optical spectrum and some chemical properties of colloidal thallium in aqueous solution. J. Phys. Chem. 97, 3434 (1993).Google Scholar
25.Belloni, J.: Nucleation, growth and properties of nanoclusters studied by radiation chemistry application to catalysis. Catal. Today 113, 141 (2010).Google Scholar
26.Hornebecq, V., Antonietti, M., Cardinal, T., and Treguer-Delapierre, M.: Stable silver nanoparticles immobilized in mesoporous silica. Chem. Mater. 15, 1993 (2003).Google Scholar
27.Mayer, A. and Antonietti, M.: Investigation of polymer-protected noble metal nanoparticles by transmission electron microscopy: Control of particles morphology and shape. Colloid Polym. Sci. 276, 769 (1998).Google Scholar
28.Klug, H.P. and Alexander, L.E.: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (Wiley, New York, 1974).Google Scholar
29.Franke, M.E., Koplin, T.J., and Simon, U.: Metal and metal oxide nanoparticles in chemiresistors: Dose the nanoscale matter? Small 2, 36 (2006).CrossRefGoogle Scholar
30.Kolmakov, A., Klenov, D.O., Lilach, Y., Stemmer, S., and Moskovits, M.: Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett. 5, 667 (2005).Google Scholar