Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T00:50:39.122Z Has data issue: false hasContentIssue false

Polarization reorientation in ferroelectric lead zirconate titanate thin films with electron beams

Published online by Cambridge University Press:  01 April 2006

D.B. Li
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
D.R. Strachan
Affiliation:
Department of Physics and Astronomy and Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
J.H. Ferris
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
D.A. Bonnell*
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
*
a) Address all correspondence to this author. e-mail: bonnell@lrsm.upenn.edu
Get access

Abstract

Ferroelectric domain patterning with an electron beam is demonstrated. Polarization of lead zirconate titanate thin films is shown to be reoriented in both positive and negative directions using piezoresponse force and scanning surface potential microscopy. Reorientation of the ferroelectric domains is a response to the electric field generated by an imbalance of electron emission and trapping at the surface. A threshold of 500 μC/cm2 and a saturation of 1500 μC/cm2 were identified. Regardless of beam energy, the polarization is reoriented negatively for beam currents less than 50 pA and positively for beam currents greater than 1 nA.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Scott, J.F., De Araujo, C.A.P.: Ferroelectric memories. Science 246, 1400 (1989).CrossRefGoogle ScholarPubMed
2.Uchino, K.Ferroelectric Devices (Marcel Dekker, New York, 2000).Google Scholar
3.Kalinin, S.V., Bonnell, D.A., Alvarez, T., Lei, X., Hu, Z., Ferris, J.H.: Atomic polarization and local reactivity on ferroelectric surfaces: A new route toward complex nanostructures. Nano Lett. 2, 589 (2002).CrossRefGoogle Scholar
4.Kalinin, S.V., Bonnell, D.A., Alvarez, T., Lei, X., Hu, Z., Shao, R., Derris, J.H.: Ferroelectric lithography of multicomponent nanostructures. Adv. Mater. 16, 795 (2004).CrossRefGoogle Scholar
5.Yamada, M., Nada, N., Saitoh, M., Watanabe, K.: First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation. Appl. Phys. Lett. 62, 435 (1993).CrossRefGoogle Scholar
6.Ahn, C.H., Tybell, T., Antognazza, L., Char, K., Hammond, R.H., Beasley, M.R., Fischer, O., Triscone, J-M.: Local, nonvolatile electronic writing of epitaxial Pb(Zr0.52Ti0.48)O3/SrRuO3 heterostructures. Science 276, 1100 (1997).CrossRefGoogle Scholar
7.Tybell, T., Ahn, C.H., Triscone, J-M.: Control and imaging of ferroelectric domains over large areas with nanometer resolution in atomically smooth epitaxial Pb(Zr0.2Ti0.8)O3 thin films. Appl. Phys. Lett. 72, 1454 (1998).CrossRefGoogle Scholar
8.Ferris, J.H., Li, D.B., Kalinin, S.V., Bonnell, D.A.: Nanoscale domain patterning of zirconate titanate materials using electon beams. Appl. Phys. Lett. 84, 774 (2004).Google Scholar
9.Yamada, M., Kishima, K.: Fabrication of periodically reversed domain structure for SHG in LiNbO3 by direct electron-beam lithography at room temperature. Electron. Lett. 27, 828 (1991).Google Scholar
10.He, J., Tang, S.H., Qin, Y.Q., Dong, P., Zhang, H.Z., Kang, C.H., Sun, W.X., Shen, Z.X.: Two-dimensional structures of ferroelectric domain inversion in LiNbO3 by direct electron-beam lithography. J. Appl. Phys. 93, 9943 (2003).CrossRefGoogle Scholar
11.Joy, D.C.: Database on electron-solid interactions (private communication, 2001).Google Scholar
12.Xu, Y.: Ferroelectric Materials and Their Applications (North-Holland, New York, 1991), p. 110.Google Scholar
13. MCNC, Raleigh, NC, composition specified by the vendor.Google Scholar
14.Kalinin, S.V., Bonnell, D.A.: Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys. Rev. B 65, 125408 (2002).CrossRefGoogle Scholar
15.Fakhfakh, S., Jbara, O., Belhaj, M., Fakhfakh, Z., Kallel, A., Rau, E.I.: Dynamic investigation of electron trapping and charge decay in electron-irradiated Al2O3 in a scanning electron microscope: Methodology and mechanisms. Nucl. Instrum. Meth. B, 197,114 (2002).Google Scholar
16.Renoud, R., Mady, F., Ganachaud, J-P.: Monte Carlo simulation of the charge distribution induced by a high-energy electron beam in an insulating target. Phys. Condens. Matter 14, 231 (2002).CrossRefGoogle Scholar
17.Cazaux, J.: Some considerations on the electric field induced in insulators by electron bombardment. J. Appl. Phys. 59, 1418 (1986).CrossRefGoogle Scholar
18.Thome, T., Braga, D., Blaise, G.: Effect of current density on electron beam induced charging in sapphire and yttria-stabilized zirconia. J. Appl. Phys. 95, 2619 (2004).CrossRefGoogle Scholar
19.Coelho, R., Aladeniz, B., Garros, B., Acroute, D., Mirebeau, P.: Toward a quantitative analysis of the mirror method for characterizing insulation. IEEE Tran. Dielectr. Electr. Insul. 6, 202 (1999).Google Scholar
20.Kanaya, K., Okayama, S.: Penetration and energy-loss theory of electrons in solid targets. J. Phys. D 5, 43 (1972).CrossRefGoogle Scholar