Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-01T05:21:54.678Z Has data issue: false hasContentIssue false

Polar-molecules-driven enhanced colloidal electrostatic interactions and their applications in achieving high active electrorheological materials

Published online by Cambridge University Press:  31 January 2011

L. Xu
Affiliation:
Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433, People’s Republic of China
W.J. Tian
Affiliation:
Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433, People’s Republic of China
X.F. Wu
Affiliation:
Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433, People’s Republic of China
J.G. Cao
Affiliation:
Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433, People’s Republic of China
L.W. Zhou
Affiliation:
Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433, People’s Republic of China
J.P. Huang*
Affiliation:
Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433, People’s Republic of China
G.Q. Gu
Affiliation:
School of Information Science and Technology, East China Normal University, Shanghai 200062, People’s Republic of China
*
b) Address all correspondence to this author. e-mail: jphuang@fudan.edu.cn
Get access

Abstract

We have fabricated a class of colloidal electrorheological (ER) fluids, in which suspended TiO2 particles were synthesized by a sol-gel method and modified by 1,4-butyrolactone molecules with a permanent molecular dipole moment of 4.524 D. Compared with pure TiO2 ER fluids, the quasi-static yield stress of the polar- molecules-modified ER fluid is enhanced as high as 48.1 kPa when subjected to an external electric field of 5 kV/mm. Also, it possesses other attractive characters such as low current density (<14 μA/cm2) and low sedimentation. Based on a Green’s function method, we present a first-principles approach to investigate colloidal electrostatic interactions. Excellent agreement between experiment and theory has been shown for the enhancement ratio of quasi-static yield stress, which quantitatively reveals that enough polar molecules oriented within the field-directed gap between the colloidal particles can unexpectedly enhance the interactions, thus yielding the unusual enhancement. This shows a promising and flexible direction for achieving more highly active ER materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Li, J., Dai, D.L., Liu, X.D., Lin, Y.Q., Huang, Y.Bai, L.: Preparation and characterization of self-formed CoFe2O4 ferrofluid. J. Mater. Res. 22, 886 2007CrossRefGoogle Scholar
2Thessing, J., Qian, J.H., Chen, H.Y., Pradhan, N.Peng, X.G.: Interparticle influence on size/size distribution evolution of nanocrystals. J. Am. Chem. Soc. 129, 2736 2007CrossRefGoogle ScholarPubMed
3Cho, C.W., Kim, S.K., Paik, U., Park, J.G.Sigmund, W.M.: Atomic force microscopy study of the role of molecular weight of poly(acrylic acid) in chemical mechanical planarization for shallow trench isolation. J. Mater. Res. 21, 473 2006CrossRefGoogle Scholar
4Weng, Y.C., Rusakova, L., Baikalov, A., Chen, J.W.Wu, N.L.: Microstructural evolution of nanocrystalline magnetite synthesized by electrocoagulation. J. Mater. Res. 20, 75 2005CrossRefGoogle Scholar
5Gonzenbach, U.T., Studart, A.R., Tervoort, E.Gauckler, L.J.: Ultrastable particle-stabilized foams. Angew. Chem., Int. Ed. Engl. 45, 3526 2006CrossRefGoogle ScholarPubMed
6Wang, J., Wang, D.Y., Sobal, N.S., Giersig, M., Jiang, M.Mohwald, H.: Stepwise directing of nanocrystals to self-assemble at water/oil interfaces. Angew. Chem., Int. Ed. Engl. 45, 7963 2006CrossRefGoogle ScholarPubMed
7Zhao, X.W., Cao, Y., Ito, F., Chen, H.H., Nagai, K., Zhao, Y.H.Gu, Z.Z.: Colloidal crystal beads as supports for biomolecular screening. Angew. Chem., Int. Ed. Engl. 45, 6835 2006CrossRefGoogle ScholarPubMed
8Zhou, D.S., Zhang, J.F., Li, L.Xue, G.: Control of the geometry of the adsorbed thin layer by the depletion interaction. J. Am. Chem. Soc. 125, 11774 2003CrossRefGoogle ScholarPubMed
9Halsey, T.C.: Electrorheological fluids. Science 258, 761 1992CrossRefGoogle ScholarPubMed
10Hao, T.: Electrorheological fluids. Adv. Mater. 13, 1847 20013.0.CO;2-A>CrossRefGoogle Scholar
11Zhang, Y.L., Lu, K.Q., Rao, G.H., Tian, Y., Zhang, S.Liang, J.K.: Electrorheological fluid with an extraordinarily high yield stress. Appl. Phys. Lett. 80, 888 2002CrossRefGoogle Scholar
12Tao, R.Sun, J.M.: 3-dimensional structure of induced electrorheological solid. Phys. Rev. Lett. 67, 398 1991CrossRefGoogle Scholar
13Whittle, M.Bullough, W.A.: Materials science: The structure of smart fluids. Nature 358, 373 1992CrossRefGoogle Scholar
14Wen, W.J., Huang, X.X., Yang, S.H., Lu, K.Q.Sheng, P.: The giant electrorheological effect in suspensions of nanoparticles. Nat. Mater. 2, 727 2003CrossRefGoogle ScholarPubMed
15Yin, J.B.Zhao, X.P.: Giant electrorheological activity of high surface area mesoporous cerium-doped TiO2 templated by block copolymer. Chem. Phys. Lett. 398, 393 2004CrossRefGoogle Scholar
16Yogo, T., Yamamoto, T., Sakamoto, W.Hirano, S.: In situ synthesis of nanocrystalline BaTiO3 particle-polymer hybrid. J. Mater. Res. 19, 3290 2004CrossRefGoogle Scholar
17Wang, B.X.Zhao, X.P.: Wettability of bionic nanopapilla particles and their high electrorheological activity. Adv. Funct. Mater. 15, 1815 2005CrossRefGoogle Scholar
18Tam, W.Y., Yi, G.H., Wen, W.J., Ma, H.R., Loy, M.M.T.Sheng, P.: New electrorheological fluid: Theory and experiment. Phys. Rev. Lett. 78, 2987 1997CrossRefGoogle Scholar
19Wen, W.J., Huang, X.X.Sheng, P.: Particle size scaling of the giant electrorheological effect. Appl. Phys. Lett. 85, 299 2004CrossRefGoogle Scholar
20Cho, M.S., Choi, H.J.Jhon, M.S.: Shear stress analysis of a semiconducting polymer based electrorheological fluid system. Polymer 46, 11484 2005CrossRefGoogle Scholar
21Hao, T.: The interfacial polarization-induced electrorheological effect. J. Colloid Interface Sci. 206, 240 1998CrossRefGoogle ScholarPubMed
22Hao, T., Kawai, A.Ikzaki, F.: Mechanism of the electrorheological effect: Evidence from the conductive, dielectric, and surface characteristics of water-free electrorheological fluids. Langmuir 14, 1256 1998CrossRefGoogle Scholar
23Wen, W.J., Wang, N., Tam, W.Y.Sheng, P.: Magnetic materials- based electrorheological fluids. Appl. Phys. Lett. 71, 2529 1997CrossRefGoogle Scholar
24Jiang, Y.M.Liu, M.: Energetic instability unjams sand and suspension. Phys. Rev. Lett. 93, 148001 2004CrossRefGoogle Scholar
25Lu, K.Q., Shen, R., Wang, X.Z., Sun, G., Wen, W.J.Liu, J.X.: Polar molecule dominated electrorheological effect. Chin. Phys. 15, 2476 2006Google Scholar
26Sasidharan, M., Mal, N.K.Bhaumik, A.: In-situ polymerization of grafted aniline in the channels of mesoporous silica SBA-15. J. Mater. Chem. 17, 278 2007CrossRefGoogle Scholar
27Tian, W.J., Nakayama, T., Huang, J.P.Yu, K.W.: Scaling behaviors in settling process of fractal aggregates in water. Europhys. Lett. 78, 46001 2007CrossRefGoogle Scholar
28Qi, M.C.Shaw, M.T.: Sedimentation-resistant electrorheological fluids based on PVAL-coated microballoons. J. Appl. Polym. Sci. 65, 539 19973.0.CO;2-S>CrossRefGoogle Scholar
29Shen, M., Cao, J.G., Xue, H.T., Huang, J.P.Zhou, L.W.: Structure of polydisperse electrorheological fluids: Experiment and theory. Chem. Phys. Lett. 423, 165 2006CrossRefGoogle Scholar
30Gu, G.Q., Yu, K.W.Hui, P.M.: A theory of induced interaction between rotating particles in electrorheological fluids. J. Chem. Phys. 116, 24 2002CrossRefGoogle Scholar
31Choi, H.J., Cho, M.S., Kim, J.W., Kim, C.A.Jhon, M.S.: A yield stress scaling function for electrorheological fluids. Appl. Phys. Lett. 78, 3806 2001CrossRefGoogle Scholar