Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-02T16:14:21.568Z Has data issue: false hasContentIssue false

Polyacetylene as heterogeneous catalyst for electroless deposition of bulk amorphous metals

Published online by Cambridge University Press:  31 January 2011

S. J. Kamrava
Affiliation:
Department of Materials Science, The Royal Institute of Technology, S-100 44 Stockholm, Sweden
S. Söderholm
Affiliation:
Department of Materials Science, The Royal Institute of Technology, S-100 44 Stockholm, Sweden
Get access

Abstract

Polyacetylene shows catalytic activity in an aqueous solution for electroless deposition of amorphous alloys. The catalytic activity of polyacetylene is comparable to the activity of some highly catalytic metals, i.e., Cu, steel, and Pt. Modifications of the Shirakawa technique led to the formation of a foam-like polyacetylene, which is highly porous and has a low degree of crystallinity. This material can be used as a catalytic substrate for the preparation of amorphous metals in bulk form. The amorphous Ni–Co–B and Ni–Co–P alloys deposited on a PAc substrate were investigated by magneto-thermogravimetry and x-ray diffraction. These investigations gave a Curie temperature of about 413 K and a crystallization temperature of about 600 K for the metal-metalloid component of the system.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Dietz, G., J. Mag. and Mag. Material 6, 47 (1977).CrossRefGoogle Scholar
2Flechon, J. and Viord, M., Acad, C. R.. Sci. B 270, 556 (1970).Google Scholar
3Chekanova, L. A., Iskhakov, R. S., Fish, G. I., Khlebopros, R. G., and Chistyakov, N. S., JETP Lett. 20, 31 (1974).Google Scholar
4Simpson, A. W. and Clements, W. G., Wiss. Z. Technol. Univ. Dresden 23, 1024 (1974).Google Scholar
5Simpson, A. W. and Clements, W. G., IEEE Trans. Magn. Mag. 11, 1338 (1974).CrossRefGoogle Scholar
6Watanabe, T. and Tanabe, Y., Proc. 4th Int. Conf. on Rapidly Quenched Metals (Sendai, 1981), p. 51.Google Scholar
7Brenner, A. and Riddle, G. E., J. Res. Natl. Bur. Stand. 39, 385 (1947).CrossRefGoogle Scholar
8Lukes, R. M., Plating 51, 969 (1964).Google Scholar
9Brenner, A. and Riddle, G. E., J. Res. Natl. Bur. Stand. 37, 31 (1946).Google Scholar
10Flechon, J., Kuhnast, F. A., and Rashid, A., Mater. Chem. and Phys. 11, 453 (1984).Google Scholar
11Salvago, G. and Covollotti, P. L., Plating 59, 665 (1972).Google Scholar
12Simpson, A. W. and Brambley, D. R., Phys. Status Solidi B 43, 291 (1971).CrossRefGoogle Scholar
13Nowak, R. G., Mark, H. B., Jr., MacDiarmid, A. G., and Weber, D., J. Chem. Soc. Commun. 1977, 9 (1977).CrossRefGoogle Scholar
14Nowak, R. G., Kitner, W., Mark, H. B., Jr., and MacDiarmid, A. G., J. Electrochem. Soc. 125, 232 (1978).CrossRefGoogle Scholar
15Chien, J. C. W., Polyacetylene, Chemistry, Physics, and Materials Science (Academic Press, New York, 1984), p. 149.Google Scholar
16Mammone, R. J., in Conducting Polymers Special Applications, edited by Alcacer, L. (D. Reidel, Dordrecht, 1987), p. 161.CrossRefGoogle Scholar
17Shirakawa, H., Hamono, A., Kawakami, S., Soga, K., and Ikeda, S., Macromolecules 13, 457 (1980).Google Scholar
18Soga, K. and Ikeda, S., in Handbook of Conducting Polymer, edited by Skotheim, T. A. (Dekker, New York, 1986), p. 661.Google Scholar
19Shirakawa, H. and Kobayashi, T., J. Phys. (Paris) C3, 3 (1983).Google Scholar
20Reynolds, J. R., Chien, J. C. W., Karasz, F. E., Lillya, C. P., and Curran, D. J., J. Phys. (Paris) C3, 171 (1983).Google Scholar
21Bjorklund, R. B. and Lundström, I., J. Electron. Mater. 13, 211 (1984).Google Scholar
22Brunauer, S., Emmett, T., and Teller, E., J. Am. Chem. Soc. 60, 309 (1938).CrossRefGoogle Scholar
23Krylov, O. V., Catalysis by Nonmetals. Roles for Catalyst Selection (Academic Press, New York, 1970).Google Scholar
24Pron, A., Billaud, D., Bernier, P., and Lefrant, S., Polym. Prep. 23, 96 (1983).Google Scholar
25Cohen, R. J. and Click, A. J., Phys. Rev. B 40, 8010 (1989).CrossRefGoogle Scholar
26Janossy, A., Pogany, L., Pekker, S., and Swietlik, R., Mol. Cryst. Liq. Cryst. 77, 185 (1981).CrossRefGoogle Scholar
27Kiess, H., Meyer, W., Beariswly, D., and Harbeke, G., J. Electron. Mater. 9, 763 (1980).CrossRefGoogle Scholar
28Chien, J. C. W., Capistran, J. D., Dickinson, L. C., Karasz, F. E., and Schen, M. A., J. Polym. Sci., Polym. Lett. Ed. 21, 93 (1982).CrossRefGoogle Scholar
29Chien, J. C. W., Yang, X., and Dickinson, L. C., Macromolecules 16, 1694 (1983).Google Scholar
30Chien, J. C. W., Polyacetylene, Chemistry, Physics, and Materials Science (Academic Press, New York, 1984), p. 93.Google Scholar