Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T19:25:08.077Z Has data issue: false hasContentIssue false

Porous SnO2/CNT composite anodes: Influence of composition and deposition temperature on the electrochemical performance

Published online by Cambridge University Press:  31 January 2011

Kevin Bechtold
Affiliation:
Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174
Lin Gu
Affiliation:
Stuttgart Center for Electron Microscopy, Max-Planck Institute for Metals Research, Stuttgart 70569, Germany
Chunlei Wang*
Affiliation:
Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174
*
a)Address all correspondence to this author. e-mail: wangc@fiu.edu
Get access

Abstract

Porous SnO2/multiwalled carbon nanotube (CNT) thin film composites as anode material for Li-ion batteries were prepared using the electrostatic spray deposition (ESD) technique. The morphologies of the samples were found to be affected mainly by deposition temperatures. Electrochemical test cells were assembled using the as-prepared samples without any conductive additive or binder. The influence of deposition temperature and CNT content on the electrochemical performance of the anodes was investigated. Compared to pure tin oxide and pure CNT, the composite anode materials showed better discharge capacity and cyclability. Among the composites, the sample deposited at 250 °C with 30 wt% CNT content was found to show better energy capacity. This can be ascribed to the porous nature of the anodes and the improvement in the conductivity by the addition of CNTs.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tarascon, J.M., Armand, M.Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001)CrossRefGoogle ScholarPubMed
2.Courtney, I.A., Dahn, J.R.Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2BPO6 glass. J. Electrochem. Soc. 144, 2943 (1997)CrossRefGoogle Scholar
3.Winter, M., Besenhard, J.O.Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 45, 31 (1999)CrossRefGoogle Scholar
4.Bourderau, S., Brousse, T., Schleich, D.M.Amorphous silicon as a possible anode material for Li-ion batteries. J. Power Sources 81–82, 233 (1999)Google Scholar
5.Chan, C.K., Zhang, X.F., Cui, Y.High capacity Li ion battery anodes using Ge nanowires. Nano Lett. 8, 307 (2008)CrossRefGoogle ScholarPubMed
6.Idota, Y., Kubota, T., Matsufuji, A., Maekawa, Y., Miyasaka, T.Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science 276, 1395 (1997)CrossRefGoogle Scholar
7.Wang, G.X., Chen, Y., Konstantinov, K., Lindsay, M., Liu, H.K., Dou, S.X.Investigation of cobalt oxides as anode materials for Li-ion batteries. J. Power Sources 109, 142 (2002)CrossRefGoogle Scholar
8.Taberna, P.L., Mitra, S., Poizot, P., Simon, P., Tarascon, J.M.High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5, 567 (2006)CrossRefGoogle ScholarPubMed
9.Rom, I., Wachtler, M., Papst, I., Schmied, M., Besenhard, J.O., Hofe, F., Winter, M.Electron microscopical characterization of Sn/SnSb composite electrodes for lithium-ion batteries. Solid State Ionics 143, 329 (2001)CrossRefGoogle Scholar
10.Wang, G.X., Sun, L., Bradhurst, D.H., Zhong, S., Dou, S.X., Liu, H.K.Nanocrystalline NiSi alloy as an anode material for lithium-ion batteries. J. Alloys Compd. 306, 249 (2000)CrossRefGoogle Scholar
11.Shin, H.C., Liu, M.Three-dimensional porous copper-tin alloy electrodes for rechargeable lithium batteries. Adv. Funct. Mater. 15, 582 (2005)CrossRefGoogle Scholar
12.Yang, S., Zavalij, P.Y., Whittingham, M.S.Anodes for lithium batteries: Tin revisited. Electrochem. Commun. 5, 587 (2003)Google Scholar
13.Idota, Y., Mishima, M., Miyaki, M., Kubota, T., Misayaka, T. European Patent Application 651450 A1 950503Google Scholar
14.Ahn, J.H., Wang, G.X., Yao, J., Liu, H.K., Dou, S.X.Tin-based composite materials as anode materials for Li-ion batteries. J. Power Sources 119, 45 (2003)CrossRefGoogle Scholar
15.Yu, Y., Gu, L., Dhanabalan, A., Chen, C.H., Wang, C.Three-dimensional porous amorphous SnO2 thin films as anodes for Li-ion batteries. Electrochim. Acta 54, 7227 (2009)CrossRefGoogle Scholar
16.Yu, Y., Chen, C.H., Shi, Y.A tin-based amorphous oxide composite with a porous, spherical, multideck-cage morphology as a highly reversible anode material for lithium-ion batteries. Adv. Mater. 19, 993 (2007)CrossRefGoogle Scholar
17.Cakan, R.D., Hu, Y.S., Antonietti, M., Maier, J., Titirici, M.M.Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chem. Mater. 20, 1227 (2008)CrossRefGoogle Scholar
18.Yuan, L., Guo, Z.P., Konstantinov, K., Wang, J.Z., Liu, H.K.In situ fabrication of spherical porous tin oxide via a spray pyrolysis technique. Electrochim. Acta 51, 3680 (2006)CrossRefGoogle Scholar
19.Deng, D., Lee, J.Y.Hollow core–shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage. Chem. Mater. 20, 1841 (2008)Google Scholar
20.Wang, Y., Ramos, I., Avilés, J.J.S.Synthesis of ultra-fine porous tin oxide fibres and its process characterization. Nanotechnology 18, 295601 (2007)CrossRefGoogle Scholar
21.Shin, H.C., Liu, M.Three-dimensional porous copper-tin alloy electrodes for rechargeable lithium batteries. Adv. Funct. Mater. 15, 582 (2005)CrossRefGoogle Scholar
22.Grigoriants, I., Soffer, A., Salitra, G., Aurbach, D.Nanoparticles of tin confined in microporous carbon matrices as anode materials for Li batteries. J. Power Sources 146, 185 (2005)CrossRefGoogle Scholar
23.Read, J., Foster, D., Wolfenstine, J., Behl, W.SnO2-carbon composites for lithium-ion battery anodes. J. Power Sources 96, 277 (2001)CrossRefGoogle Scholar
24.Ajayan, P.M., Zhou, O.Z.Applications of carbon nanotubes. Top. Appl. Phys. 80, 391 (2001)Google Scholar
25.Chen, J., Lu, G.Controlled decoration of carbon nanotubes with nanoparticles. Nanotechnology 17, 2891 (2006)CrossRefGoogle Scholar
26.Chen, M.H., Huang, Z.C., Wu, G.T., Zhu, G.M., You, J.K., Lin, Z.G.Synthesis and characterization of SnO–carbon nanotube composite as anode material for lithium-ion batteries. Mater. Res. Bull. 38, 831 (2003)CrossRefGoogle Scholar
27.Xie, J., Varadan, V.K.Synthesis and characterization of high surface area tin oxide/functionalized carbon nanotubes composite as anode materials. Mater. Chem. Phys. 91, 274 (2005)CrossRefGoogle Scholar
28.An, G., Na, N., Zhang, X., Miao, Z., Miao, S., Ding, K., Liu, Z.SnO2/carbon nanotube nanocomposites synthesized in supercritical fluids: Highly efficient materials for use as a chemical sensor and as the anode of a lithium-ion battery. Nanotechnology 18, 435707 (2007)CrossRefGoogle Scholar
29.Fu, Y., Ma, R., Shu, Y., Cao, Z., Ma, X.Preparation and characterization of SnO2/carbon nanotube composite for lithium ion battery applications. Mater. Lett. 63, 1946 (2009)CrossRefGoogle Scholar
30.Shui, J.L., Yu, Y., Chen, C.H.Deposition conditions in tailoring the morphology of highly porous reticular films prepared by electrostatic spray deposition (ESD) technique. Appl. Surf. Sci. 253, 2379 (2006)CrossRefGoogle Scholar
31.Leeuwenburgh, S.C.G., Wolke, J.G.C., Schoonman, J., Jansen, J.A.Influence of deposition parameters on morphological properties of biomedical calcium phosphate coatings prepared using electrostatic spray deposition. Thin Solid Films 472, 105 (2005)CrossRefGoogle Scholar
32.Jaworek, A., Sobczyk, A.T.Electrospraying route to nanotechnology: An overview. J. Electrost. 66, 197 (2008)CrossRefGoogle Scholar
33.Zhi, L.K., Hui, X.Y., Lin, W.X., Hua, L.G.Electrochemical intercalation of lithium into raw and mild oxide treated carbon nanotubes prepared by CVD. J. Wuhan Univ. Technol. 19, 21 (2004)Google Scholar
34.Eklund, P.C., Holden, J.M., Jishi, R.A.Vibrational modes of carbon nanotubes: Spectroscopy and theory. Carbon 33, 959 (1995)CrossRefGoogle Scholar
35.Pal, J., Chauhana, P.Structural and optical characterization of tin dioxide nanoparticles prepared by a surfactant mediated method. Mater. Charact. 60, 1512 (2009)Google Scholar
36.Zhou, J.X., Zhang, M.S., Hong, J.M., Yin, Z.Raman spectroscopic and photoluminescence study of single-crystalline SnO2 nanowires. Solid State Commun. 138, 24 (2006)CrossRefGoogle Scholar
37.Wang, J.X., Liu, D.F., Yuan, H.J., Ci, L.J., Zhou, Z.P., Gao, Y., Liu, L.F., Zhou, W.Y., Wang, G., Xie, S.S.Growth of SnO2 nanowires with uniform branched structures. Solid State Commun. 130, 89 (2004)Google Scholar
38.Chen, W., Pan, X., Bao, X.Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes. J. Am. Chem. Soc. 129, 7421 (2007)CrossRefGoogle ScholarPubMed
39.Kim, J.Y., King, I.E., Kumta, P.N., Blomgren, G.E.Chemical synthesis of tin oxide-based materials for Li-ion battery anodes: Influence of process parameters on the electrochemical behavior. J. Electrochem. Soc. 147, 4411 (2000)Google Scholar
40.Li, H., Huang, X.J., Chen, L.Q.Direct imaging of the passivating film and microstructure of nanometer-scale SnO anodes in lithium rechargeable batteries. Electrochem. Solid-State Lett. 1, 241 (1998)Google Scholar
41.Courtney, I.A., Dahn, J.R.Electrochemical and in-situ x-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc. 144, 2045 (1997)CrossRefGoogle Scholar
42.Wang, Z., Chen, G., Xia, D.Coating of multi-walled carbon nanotube with SnO2 films of controlled thickness and its application for Li-ion battery. J. Power Sources 184, 432 (2008)CrossRefGoogle Scholar