Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T16:22:26.131Z Has data issue: false hasContentIssue false

Precipitation phenomena in high-dose iron-implanted silica and annealing behavior

Published online by Cambridge University Press:  31 January 2011

A. Perez
Affiliation:
Departement de Physique de Matériaux, Université Claude Bernard-Lyon 169622 Villeurbanne Cédex, France
M. Treilleux
Affiliation:
Departement de Physique de Matériaux, Université Claude Bernard-Lyon 169622 Villeurbanne Cédex, France
T. Capra
Affiliation:
Departement de Physique de Matériaux, Université Claude Bernard-Lyon 169622 Villeurbanne Cédex, France
D. L. Griscom
Affiliation:
Naval Research Laboratory, Washington, DC 20375
Get access

Abstract

The effects of high-dose iron implantation into high-purity fused silica have been investigated by conversion-electron Mössbauer spectroscopy, transmission electron microscopy, Rutherford backscattering, and optical spectroscopy. In addition to isolated Fe2+ ions, samples subjected to doses of 4⊠1016 and 6 ⊠ 1016 ions cm−2 were found to contain homogeneously dispersed, equidimensional, crystalline particles ⋍2 nm, similar to Fe3O4. Precipitated spherical particles of metallic α-Fe⋍4 nm were observed in samples receiving a dose of ⋍ 1017 ions cm−2; as the dose was raised to 2.5 ⊠ 1017 ions cm−2 the mean size of these particles reached ⋍ 30 nm. Annealing in air to 800°C resulted in the growth of acicular grains of α-Fe2O3 ⋍ 20–300 nm. The optical spectra of the implanted layers are compared with the predictions of small particle theory.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Perez, A.Nucl. Instrum. Methods Phys. Res. B 1, 621 (1984).CrossRefGoogle Scholar
2Perez, A.Bert, J.Marest, G.Sawicka, B. and Sawicki, J.Nucl. In-strum. Methods 209/210, 281 (1983).CrossRefGoogle Scholar
3Perez, A.Meaudre, R.Thevenard, P. and Sibut, P.Induced Defects In Insulators, edited by Mazzoldi, P. (Les Editions de Physique, Ce-dex, France, 1985), p. 171.Google Scholar
4Griscom, D. L.Krebs, J. J.Perez, A. and Treilleux, M. (to be published).Google Scholar
5Massenet, O.Nucl. Instrum. Methods 153, 419 (1978).CrossRefGoogle Scholar
6Morup, S.Topsoe, H. and Lipka, J.J. Phys. Colloq. C6 37, 287 (1976).Google Scholar
7Elias, D. J. and Linnett, J. W.Trans. Faraday Soc. 65, 2663 (1969).CrossRefGoogle Scholar
8Iwamoto, N.Tsunawaki, Y.Nakagawa, H.Miyago, M. T. Yoshi-mura, and Wakabayashi, N.J. Phys. Colloq. C2 40, C2151 (1979).Google Scholar
9Mie, G.Ann. Phys. 25, 377 (1908).CrossRefGoogle Scholar
10Hulst, H. C. van de, Light Scattering by Small Particles (Wiley, New York, 1957).Google Scholar
11Bohren, C. F. and Huffman, D. R.Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).Google Scholar
12Doyle, W. T.Phys. Rev. III 1067 (1958).Google Scholar
13andbook of Chemistry and Physics (Chemical Rubber Co., Cleveland, 1956), 38th ed., p. 2703.Google Scholar
14Buchenau, U. and Muller, I.Solid State Commun. 11, 1291 (1972).CrossRefGoogle Scholar
15Heraeus-Amersil Inc., Optical Fused Quartz and Fused Silica, Publication No. HAI-9227-3 1M-81, 1981.Google Scholar
16Marquardt, C. L. and Griscom, D. L.Moon 15, 15 (1976).CrossRefGoogle Scholar
17Bowen, L. W.Mossbauer Eff. Ref. Data J. 2, 76 (1979).Google Scholar
18Kunding, W.Bommel, H.Constabaris, G. and Lindquist, R. H.Phys. Rev. 142, 327 (1966).CrossRefGoogle Scholar
19Kuznetsov, A. S. and Yaek, I. V.Sov. Phys. Solid State 18, 2501 (1976).Google Scholar
20Perez, A.Marest, G.Sawicka, B. D.Sawicki, J. A. and Tyliszczak, T., Phys. Rev. B 28, 1227 (1983).CrossRefGoogle Scholar