Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-29T05:10:38.021Z Has data issue: false hasContentIssue false

Precursor pathway to superconducting HgBa2(Ca0.86Sr0.14)2Cu3O8+δ with a Tc of 132 K

Published online by Cambridge University Press:  03 March 2011

Nam H. Hur
Affiliation:
Korea Research Institute of Standards and Science, P.O. Box 102 Yusong, Taejon 305-600, Republic of Korea
Nae H. Kim
Affiliation:
Korea Research Institute of Standards and Science, P.O. Box 102 Yusong, Taejon 305-600, Republic of Korea
Yong K. Park
Affiliation:
Korea Research Institute of Standards and Science, P.O. Box 102 Yusong, Taejon 305-600, Republic of Korea
Jong C. Park
Affiliation:
Korea Research Institute of Standards and Science, P.O. Box 102 Yusong, Taejon 305-600, Republic of Korea
Get access

Abstract

Polycrystalline samples of HgBa2(Ca0.86Sr0.14)2Cu3O8+δ (denoted as Hg-1223) were prepared by a precursor route, which involves the reaction between HgO and two precursors: Ba2CuO3+x and Ca0.14CuO2. X-ray powder diffraction analysis revealed that the Hg-1223 is isostructural with pristine HgBa2Ca2Cu3O8−δ and TlBa2Ca2Cu3O9−δ. The Hg-1223 has tetragonal symmetry with space group P4/mmm, and lattice parameters a = 3.8648(2) Å and c = 16.0319(2) Å. The as-synthesized Hg-1223 sample has a Tc of about 126 K. After annealing in an oxygen atmosphere at 280 °C for 10 h, the Tc increased to 132 K. Using this precursor pathway, Hg-1223 samples can be reproducibly synthesized.

Type
Rapid Communication
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Putilin, S.N., Antipov, E.V., Chmaissem, O., and Marezio, M., Nature (London) 362, 226 (1993).CrossRefGoogle Scholar
2Schilling, A., Cantoni, M., Guo, J.D., and Ott, H.R., Nature (London) 363, 56 (1993).CrossRefGoogle Scholar
3Antipov, E.V., Loureiro, S.M., Chaillout, C., Capponi, J.J., Bordet, P., Tholence, J.L., Putilin, S.N., and Marezio, M., Physica C 215, 1 (1993).CrossRefGoogle Scholar
4Nunez-Regueiro, M., Tholence, J.L., Antipov, E.V., Caponi, J.J., and Marezio, M., Science 262, 97 (1993).CrossRefGoogle Scholar
5Chu, C.W., Gao, L., Chen, F., Huang, Z.J., Meng, R.L., and Xue, Y.Y., Nature (London) 365, 323 (1993).CrossRefGoogle Scholar
6Isawa, K., Tokiwa-Yamamoto, A., Itoh, M., Adachi, S., and Yamauchi, H., Physica C 222, 33 (1994).CrossRefGoogle Scholar
7Meng, R.L., Beauvais, L., Zhang, X.N., Huang, Z.Y., Sun, Y.Y., Xue, Y.Y., and Chu, C.W., Physica C 216, 21 (1993).CrossRefGoogle Scholar
8Paranthaman, M., Physica C 222, 7 (1994).CrossRefGoogle Scholar
9Shao, H.M., Shen, L.J., Shen, J.C., Hua, X.Y., Yuan, P.F., and Yao, X.X., Physica C 232, 5 (1994).CrossRefGoogle Scholar
10Hur, N.H., Kim, N.H., Kim, S.H., Park, Y.K., and Park, J.C., Physica C 231, 227 (1994).CrossRefGoogle Scholar
11Siegrist, T., Zahurak, S.M., Murphy, D.W., and Roth, R.S., Nature (London) 334, 231 (1988).CrossRefGoogle Scholar
12Leeuw, D.M. De, Mutsaers, C.A.H.A., Langereis, C., Smoorenburg, H.C.A., and Rommers, P.J., Physica C 152, 39 (1988).CrossRefGoogle Scholar
13West, A.R., Solid State Chemistry and Its Application (John Wiley & Sons, Chichester, 1987).Google Scholar
14Macfarlane, R.M., Rosen, H.J., Engler, E.M., Jacowitz, R.O., and Lee, V.Y., Phys. Rev. B 38, 284 (1988).CrossRefGoogle Scholar