Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-02T22:05:16.066Z Has data issue: false hasContentIssue false

Precursor scavenging of the resistive grain-boundary phase in 8 mol% yttria-stabilized zirconia: Effect of trace concentrations of SiO2

Published online by Cambridge University Press:  31 January 2011

Jong-Heun Lee*
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1–1, Tsukuba, Ibaraki, 305–0044, Japan
Toshiyuki Mori
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1–1, Tsukuba, Ibaraki, 305–0044, Japan
Ji-Guang Li
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1–1, Tsukuba, Ibaraki, 305–0044, Japan
Takayasu Ikegami
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1–1, Tsukuba, Ibaraki, 305–0044, Japan
John Drennan
Affiliation:
Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, Brisbane, Qld 4072, Australia
Doh-Yeon Kim
Affiliation:
Center for Microstructure Science of Materials, School of Materials Science and Engineering, Seoul National University, Seoul 151–742, South Korea
*
a)Address all correspondence to this author.Current address: School of materials science and engineering, Seoul National University, Seoul 151-742, South korea.jongheun@gong.snu.ac.kr
Get access

Abstract

The influence that trace concentrations of SiO2 have on improving grain-boundary conduction via precursor scavenging using additional heat treatment at 1200 °C for 40 h before sintering was investigated. At a SiO2-impurity level (SIL) ≤160 ppm by weight, the grain-boundary resistivity (ρgb) decreased to 20% of its value, while no improvement in grain-boundary conduction was found at a SIL ≥ 310 ppm. The correlation between the resistance per unit grain-boundary area, rgb, and average grain size indicated that the inhomogeneous distribution of the siliceous phase in the sample with a SIL ≥ 310 ppm hampered the scavenging reaction.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Aoki, M., Chiang, Y-M., Kosacki, I., Lee, J-R., Tuller, H., and Liu, Y., J. Am. Ceram. Soc. 79, 1169 (1996).CrossRefGoogle Scholar
2Gödickemeier, M., Michel, B., Orliukas, A., Bohac, P., Sasaki, K., Gauckler, L., Henrich, H., Schwander, P., Kostorz, G., Hofmann, H., and Frei, O., J. Mater. Res. 9, 1228 (1994).CrossRefGoogle Scholar
3Appel, C.C. and Bonanos, N., J. Eur. Ceram. Soc. 19, 847 (1999).CrossRefGoogle Scholar
4Lee, J-H., Mori, T., Li, J-G., Ikegami, T., Komatsu, M., and Haneda, H., J. Am. Ceram. Soc. 83, 1273 (2000).CrossRefGoogle Scholar
5Feighery, A.J. and Irvine, J.T.S., Solid State Ionics 121, 209 (1999).CrossRefGoogle Scholar
6Guo, X., Tang, C-Q., and Yuan, R-Z., J. Eur. Ceram. Soc. 15, 25 (1995).CrossRefGoogle Scholar
7Butler, E.P. and Drennan, J., J. Am. Ceram. Soc. 65, 474 (1982).CrossRefGoogle Scholar
8Lee, J-H., Mori, T., Li, J-G., Ikegami, T., Komatsu, M., and Haneda, H., Electrochemistry 68, 427 (2000).CrossRefGoogle Scholar
9Miyayama, M., Yanagida, H., and Asada, A., Am. Ceram. Soc. Bull. 65, 660 (1986).Google Scholar
10Lee, J-H., Mori, T., Li, J-G., Ikegami, T., Komatsu, M., and Haneda, H., J. Electrochem. Soc. 147, 2822 (2000).CrossRefGoogle Scholar
11Mendelson, M.I., J. Am. Ceram. Soc. 52, 443 (1969).CrossRefGoogle Scholar
12Badwal, S.P.S., Solid State Ionics 52, 23 (1992).CrossRefGoogle Scholar
13Verkerk, M.J., Middelhuis, B.J., and Burggraaf, A.J., Solid State Ionics 6, 159 (1982).CrossRefGoogle Scholar
14Gambino, J.P., Kingery, W.D., Pike, G.E., Levinson, L.M., and Phillipp, H.R., J. Am. Ceram. Soc. 72, 642 (1989).CrossRefGoogle Scholar
15Hughes, A.E. and Badwal, S.P.S., Solid State Ionics 46, 265 (1991).CrossRefGoogle Scholar
16Ellison, A.J.G. and Navrotsky, A., J. Am. Ceram. Soc. 75, 1430 (1992).CrossRefGoogle Scholar
17Kanno, Y., J. Mater. Sci. 24, 2415 (1989).CrossRefGoogle Scholar
18Mori, T., Yamamura, H., Kobayashi, K., and Mitamura, T., J. Mater. Sci. 28, 4970 (1993).CrossRefGoogle Scholar
19Vilmin, G., Komarneni, S., and Roy, R., J. Mater. Sci. 22, 3556 (1987).CrossRefGoogle Scholar
20Butterman, W.C. and Foster, W.R., Am. Mineral. 52, 880 (1967).Google Scholar
21Curtis, C.E. and Sowman, H.G., J. Am. Ceram.Soc. 36, 190 (1953).CrossRefGoogle Scholar
22Du, C., Yuan, Q., and Yang, Z., J. Mater. Sci. Lett. 18, 965 (1999).CrossRefGoogle Scholar
23Shoyama, M., Matsumoto, N., Hashimoto, T., Nasu, H., and Kamiya, K., J. Mater. Sci. 33, 4821 (1998).CrossRefGoogle Scholar
24Kadogawa, Y. and Yamate, T., J. Ceram. Soc. Jpn. (Yogyo Kyokai Shi) 93, 74 (1985) (in Japanese).Google Scholar