Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T16:39:33.021Z Has data issue: false hasContentIssue false

Predictions of strontium accommodation in A2B2O7 pyrochlores

Published online by Cambridge University Press:  31 January 2011

Mohsin Pirzada
Affiliation:
Department of Materials, Imperial College, London SW72BP, United Kingdom
Robin W. Grimes
Affiliation:
Department of Materials, Imperial College, London SW72BP, United Kingdom, and Los Angeles National Laboratory, Los Alamos, New Mexico 87545
John Maguire
Affiliation:
AFRL/MLMR, Air Force Research Laboratory, Wright Patterson Air Force Laboratory, Ohio 45433
Kurt Sickafus
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

A2B2O7 pyrochlore oxides are being considered as potential host materials for the immobilization of fission products. It is therefore important to establish the relative ability of these compounds to accommodate fission product ions. We address this issue by using computer simulations to predict the structures and relative equilibrium energies associated with solution of Sr2+ over an extensive compositional range. Results indicate that strontium is accommodated via substitution for A host cations with oxygen vacancy compensation. This results in a nonstoichiometric composition. Optimum compositions and defect clusters structures are identified by constructing contour energy maps.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wang, S.X., Begg, B.D., Wang, L.M., Ewing, R.C., Weber, W.J., and Kutty, K.V. Godivan, J. Mater. Res. 14, 4470 (1999).CrossRefGoogle Scholar
2.Sickafus, K.E., Minervini, L., Grimes, R.W., Valdez, J.A., Ishimary, M., Li, F., McClellan, K.J., and Hartmann, T., Science 289, 748 (2000).CrossRefGoogle Scholar
3.Weber, W.J., Ewing, R.C., Catlow, C.R.A., Rubia, T. Diaz de la, Hobbs, L.W., Kinoshita, C., Matzke, Hj., Motta, A.T., Nastasi, M., Salje, E.H.K., Vance, E.R., and Zinkle, S.J., J. Mater. Res. 13, 1434 (1998).CrossRefGoogle Scholar
4.Lumpkin, G.R., Chakoumakos, B.C., and Ewing, R.C., Am. Mineral. 71, 569 (1986).Google Scholar
5.Lumpkin, G.R. and Ewing, R.C., Phys. Chem. Min. 16, 2 (1988).CrossRefGoogle Scholar
6.Weber, W.J., Radiation Effects 77, 295 (1983).CrossRefGoogle Scholar
7.Clinard, F.W. Jr., Rohr, D.L., and Roof, R.B., Nucl. Instrum. Methods Phys. Res. B 1, 581 (1984).CrossRefGoogle Scholar
8.Pirzada, M., Grimes, R.W.. Minervini, L., LeClair, S., and Sickafus, K.E., Solid State Ionics. 140, 201 (2001).CrossRefGoogle Scholar
9.Tuller, H.L. in Defects and Disorder in Crystalline and Amorphous Solids, edited by Catlow, R.A. (Kluwer, Dordrecht, the Netherlands, 1994), p. 189.CrossRefGoogle Scholar
10.Weber, W.J. and Ewing, R.C., Science 289, 2051 (2000).CrossRefGoogle Scholar
11.Management and Disposition of Excess Weapons Plutonium: Reactor-Related Options, Panel on Reactor-Related Options for the Disposition of Excess Weapons Plutonium, National Research Council (National Academy of Sciences Press, 1995).Google Scholar
12.Williford, R.E., Weber, W.J., Devanathan, R., and Gale, J.D., J. Electroceram. 3, 409 (1999).CrossRefGoogle Scholar
13.Kröger, F.A. and Vink, H.J., Solid State Physics—Advances in Research and Applications (Academic Press, New York, 1957).Google Scholar
14.Pirzada, M., Ph.D. Thesis, University of London, London, United Kingdom, (2002, in preparation).Google Scholar
15.Chiang, Y-M., Birnie, D.P. III , and Kingery, W.D., Physical Ceramics: Principles for Ceramic Science and Engineering (John Wiley & Son, Inc., Canada, 1997), p. 111.Google Scholar
16.Lumpkin, G.R. and Ewing, R.C., Am. Mineral. 80, 732 (1995).CrossRefGoogle Scholar
17.Born, M., Atomtheorie des Feten Zustandes (Teubner, Keipzig, Germany, 1923).Google Scholar
18.Ewald, P.P., Ann. Phys. (Leipzig). 64, 253 (1921).CrossRefGoogle Scholar
19.Minervini, L., Grimes, R.W., and Sickafus, K.E., J. Am. Ceram. 83, 1873 (2000).CrossRefGoogle Scholar
20.Catlow, C.R.A. and Mackrodt, W.C., Computer Simulation of Solids (Springer-Verlag, Berlin, Germany, 1982).CrossRefGoogle Scholar
21.Mott, N.F. and Littleton, M.J., Trans. Faraday Soc. 34, 485 (1932).CrossRefGoogle Scholar
22.Leslie, M., CASCADE[H23041], DL/SCI/TM31T, Technical Report SERC Daresbury Laboratory, United Kingdom (1982).Google Scholar
23.Dick, B.G. and Overhauser, A.W., Phys. Rev. 112, 90 (1958).CrossRefGoogle Scholar
24.Microcal Origin[H23041] Microcal Software Inc., Northampton, MA 01060.Google Scholar
25.Tinker, R.A. and Smith, J.D., Analy. Chim. Acta. 332, 291 (1996).CrossRefGoogle Scholar
26.Zacate, M.O. and Grimes, R.W., Philos. Mag. A 80, 797 (2000).CrossRefGoogle Scholar