Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-11T04:41:53.410Z Has data issue: false hasContentIssue false

Preliminary study on effect of nano-hydroxyapatite and mesoporous bioactive glass on DNA

Published online by Cambridge University Press:  12 June 2018

Itishree Ratha
Affiliation:
Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India
Akrity Anand
Affiliation:
Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India
Sabyasachi Chatterjee
Affiliation:
Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
Biswanath Kundu*
Affiliation:
Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India
Gopinatha Suresh Kumar
Affiliation:
Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
*
a)Address all correspondence to this author. e-mail: biswa_kundu@rediffmail.com
Get access

Abstract

In this study, nano-hydroxyapatite (n-HAp) of average crystallite size ∼8.15 ± 4 nm of hexagonal geometry with size ranging between 14 and 50 nm was synthesized in laboratory at room temperature by using suitable sources of calcium and phosphate ions and using triethanolamine. Mesoporous bioactive glass (MBG) was synthesized by using cationic surfactant cetyl trimethyl ammonium bromide of the SiO2–CaO–P2O5 glass system. After calcination at 650 °C, MBG powders were having a zeta potential of −16.5 mV (pH ∼9.1), median particle size ∼75 nm, and specific surface area 473.2 m2/g. An aqueous suspension of DNA was used to disperse both n-HAp and MBG and further subjected for analysis including absorbance, circular dichroism spectroscopy, UV-melting, and isothermal titration calorimetry. Absorbance spectroscopy indicated that an equilibrium binding was obtained between both materials and DNA in solution phase. Due to the addition of the nanomaterial, molar ellipticity of DNA was changed revealing that the materials were interacted with DNA. From UV melting characterization, there is a shifting of the melting temperature of DNA in the presence of MBG and n-HAp, respectively, suggesting that the nanoparticles stabilized DNA helix to a considerable extent.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bhowmik, R., Katti, K.S., and Katti, D.R.: Mechanics of molecular collagen is influenced by hydroxyapatite in natural bone. J. Mater. Sci. 42, 8795 (2007).Google Scholar
Tortora, G.J.: Principles of Human Anatomy, 5th ed. (Harper and Row Publishers, New York, New York, 1989).Google Scholar
Ji, B. and Gao, H.: Elastic properties of nanocomposite structure of bone. Compos. Sci. Technol. 66, 1212 (2006).CrossRefGoogle Scholar
Buehler, M.J.: Nature designs tough collagen: Explaining the nanostructure of collagen fibrils. Proc. Natl. Acad. Sci. U.S.A. 103, 12285 (2006).CrossRefGoogle ScholarPubMed
Itoh, S., Kikuchi, M., Koyama, Y., Takakuda, K., Shinomiya, K., and Tanaka, J.: Development of an artificial vertebral body using a novel biomaterial, hydroxyapatite/collagen composite. Biomaterials 23, 3919 (2002).CrossRefGoogle ScholarPubMed
Kadler, K.E., Holmes, D.F., Trotter, J.A., and Chapman, J.A.: Collagen fibril formation. Biochem. J. 316, 1 (1996).CrossRefGoogle ScholarPubMed
Regi, M.V., Ragel, C., and Salinas, A.J.: Glasses with medical applications. Eur. J. Inorg. Chem. 2003, 1029 (2003).CrossRefGoogle Scholar
Racquel, Z.L.: Calcium Phosphates in Oral Biology and Medicine (Karger Publishers, New York, New York, 1991).Google Scholar
Giannelis, E.P.: A new strategy for synthesizing polymer-ceramic nanocomposites. JOM 44, 28 (1992).CrossRefGoogle Scholar
Liu, Q., De Wijn, J.R., and Van Blitterswijk, C.A.: Nano-apatite/polymer composites: Mechanical and physicochemical characteristics. Biomaterials 18, 1263 (1997).CrossRefGoogle ScholarPubMed
Katti, K.S.: Biomaterials in total joint replacement. Colloids Surf., B 39, 133 (2004).Google Scholar
Baker, R., Rogers, K.D., Shepherd, N., and Stone, N.: New relationships between breast microcalcifications and cancer. Br. J. Cancer 103, 1034 (2010).Google Scholar
del Valle, L.J., Bertran, O., Chaves, G., Revilla-Lopez, G., Rivas, M., Casas, M.T., Casanovas, J., Turon, P., Puiggali, J., and Aleman, C.: DNA adsorbed on hydroxyapatite surfaces. J. Mater. Chem. B 2, 6953 (2014).CrossRefGoogle ScholarPubMed
Zhu, S.H., Huang, B.Y., Zhou, K.C., Huang, S.P., Liu, F., Li, Y.M., Xue, Z.G., and Long, Z.G.: Hydroxyapatite nanoparticles as a novel gene carrier. J. Nanoparticle Res. 6, 307 (2004).Google Scholar
Okazaki, M., Yoshida, Y., Yamaguchi, S., Kaneno, M., and Elliott, J.C.: Affinity binding phenomena of DNA onto apatite crystals. Biomaterials 22, 2459 (2001).Google Scholar
Bertran, O., del Valle, L.J., Revilla-Lopez, G., Chaves, G., Cardus, L., Casas, M.T., Casanovas, J., Turon, P., Puiggali, J., and Aleman, C.: Mineralization of DNA into nanoparticles of hydroxyapatite. Dalton Trans. 43, 317 (2014).Google Scholar
Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., and Stucky, G.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548 (1998).Google Scholar
Ohtsuki, C., Kokubo, T., and Yamamuro, T.: Mechanism of apatite formation on CaOSiO2P2O5 glasses in a simulated body fluid. J. Non-Cryst. Solids 143, 84 (1992).CrossRefGoogle Scholar
Hutmacher, D.W.: Scaffolds in tissue engineering bone and cartilage. Biomaterials 21, 2529 (2000).CrossRefGoogle ScholarPubMed
Yan, X., Yu, C., Zhou, X., Tang, J., and Zhao, D.: Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew. Chem., Int. Ed. 43, 5980 (2004).Google Scholar
Kundu, B., Ghosh, D., Sinha, M.K., Sen, P.S., Balla, V.K., Das, N., and Basu, D.: Doxorubicin-intercalated nano-hydroxyapatite drug-delivery system for liver cancer: An animal model. Ceram. Int. 39, 9557 (2013).CrossRefGoogle Scholar
Yun, H-s., Kim, S-h., Lee, S., and Song, I-h.: Synthesis of high surface area mesoporous bioactive glass nanospheres. Mater. Lett. 64, 1850 (2010).CrossRefGoogle Scholar
Bernard, S.A., Balla, V.K., Davies, N.M., Bose, S., and Bandyopadhyay, A.: Bone cell-materials interactions and Ni ion release of anodized equiatomic NiTi alloy. Acta Biomater. 7, 1902 (2011).Google Scholar
Chaires, J.B.: Equilibrium studies on the interaction of daunomycin with deoxypolynucleotides. Biochemistry 22, 4204 (1983).Google Scholar
Islam, M.M., Chowdhury, S.R., and Kumar, G.S.: Spectroscopic and calorimetric studies on the binding of alkaloids berberine, palmatine and coralyne to double stranded RNA polynucleotides. J. Phys. Chem. B 113, 1210 (2009).Google Scholar
Hossain, M. and Kumar, G.S.: Thermodynamic profiles of the DNA binding of benzophenanthridines sanguinarine and ethidium: A comparative study with sequence specific polynucleotides. J. Chem. Therm. 42, 1273 (2010).Google Scholar
Sinha, R., Islam, M.M., Bhadra, K., Kumar, G.S., Banerjee, A., and Maiti, M.: The binding of DNA intercalating and non-intercalating compounds to A-form and protonated form of poly(rC)·poly(rG): Spectroscopic and viscometric study. Bioorg. Med. Chem. 14, 800 (2006).CrossRefGoogle ScholarPubMed
Bhowmik, D., Hossain, M., Buzzetti, F., Auria, R.D., Lombardi, P., and Kumar, G.S.: Biophysical studies on the effect of the 13 position substitution of the anticancer alkaloid berberine on its DNA binding. J. Phys. Chem. B 116, 2314 (2012).Google Scholar
Tkalcec, E., Sauer, M., Nonninger, R., and Schmidt, H.: Sol–gel-derived hydroxyapatite powders and coatings. J. Mater. Sci. 36, 5253 (2001).Google Scholar
Narasaraju, T.S.B. and Phebe, D.E.: Some physico-chemical aspects of hydroxylapatite. J. Mater. Sci. 31, 1 (1996).CrossRefGoogle Scholar
Suetsugu, Y., Shimoya, I., and Tanaka, J.: Configuration of carbonate ions in apatite structure determined by polarized infrared spectroscopy. J. Am. Ceram. Soc. 81, 746 (1998).CrossRefGoogle Scholar
ElBatal, H.A., Azooz, M.A., Khalil, E.M.A., Monem, A.S., and Hamdy, Y.M.: Characterization of some bioglass-ceramics. Mater. Chem. Phys. 80, 599 (2003).CrossRefGoogle Scholar
Mezahi, F-Z., Lucas-Girot, A., Oudadesse, H., and Harabi, A.: Reactivity kinetics of 52S4 glass in the quaternary system SiO2–CaO–Na2O–P2O5: Influence of the synthesis process: Melting versus sol–gel. J. Non-Cryst. Solids 361, 111 (2013).Google Scholar
Garcia, A., Cicuendez, M., Izquierdo-Barba, I., Arcos, D., and Vallet-Regi, M.: Essential role of calcium phosphate heterogeneities in 2D-hexagonal and 3D-cubic SiO2–CaO–P2O5 mesoporous bioactive glasses. Chem. Mater. 21, 5474 (2009).Google Scholar
Hanaor, D., Michelazzi, M., Leonelli, C., and Sorrell, C.C.: The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. J. Eur. Ceram. Soc. 32, 235 (2012).CrossRefGoogle Scholar
Wu, C., Fan, W., and Chang, J.: Functional mesoporous bioactive glass nanospheres: Synthesis, high loading efficiency, controllable delivery of doxorubicin and inhibitory effect on bone cancer cells. J. Mater. Chem. B 1, 2710 (2013).Google Scholar
Li, Y., Chen, X., Ning, C., Yuan, B., and Hu, Q.: Facile synthesis of mesoporous bioactive glasses with controlled shapes. Mater. Lett. 161, 605 (2015).Google Scholar
Chatterjee, S. and Kumar, G.S.: Targeting the heme proteins hemoglobin and myoglobin by janus green blue and study of the dye-protein association by spectroscopy and calorimetry. RSC Adv. 4, 42706 (2014).Google Scholar
Chatterjee, S. and Kumar, G.S.: Binding of fluorescent acridine dyes acridine orange and 9-aminoacridine to hemoglobin: Elucidation of their molecular recognition by spectroscopy, calorimetry and molecular modeling techniques. J. Photochem. Photobiol. B Biol. 159, 169 (2016).Google Scholar
Chatterjee, S. and Suresh Kumar, G.: Visualization of stepwise drug-micelle aggregate formation and correlation with spectroscopic and calorimetric results. J. Phys. Chem. B 120, 11751 (2016).CrossRefGoogle ScholarPubMed
Roy, A., Chatterjee, S., Pramanik, S., Devi, P.S., and Kumar, G.S.: Selective detection of Escherichia coli DNA using fluorescent carbon spindles. Phys. Chem. Chem. Phys. 18, 12270 (2016).CrossRefGoogle ScholarPubMed
Das, S., Pramanik, S., Chatterjee, S., Das, P.P., Devi, P.S., and Suresh Kumar, G.: Selective binding of genomic Escherichia coli DNA with ZnO leads to white light emission: A new aspect of nano-bio interaction and interface. ACS Appl. Mater. Interfaces 9, 644 (2017).Google Scholar