Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T03:24:44.906Z Has data issue: false hasContentIssue false

Preparation of calcium strontium hydroxyapatites by a new route involving calcium phosphate cements

Published online by Cambridge University Press:  31 January 2011

L. Leroux*
Affiliation:
Centre Interuniversitaire de Recherche et d'Ingeénierie des Mateériaux (CIRIMAT), CNRS-UMR No. 5085, INPT-ENSCT, Equipe de Physico-Chimie des Phosphates, 38, rue des 36 Ponts, 31400 Toulouse, France
J. L. Lacout
Affiliation:
Centre Interuniversitaire de Recherche et d'Ingeénierie des Mateériaux (CIRIMAT), CNRS-UMR No. 5085, INPT-ENSCT, Equipe de Physico-Chimie des Phosphates, 38, rue des 36 Ponts, 31400 Toulouse, France
*
a)Address all correspondence to this author. e-mail: leroux@cict.fr
Get access

Abstract

A new route, based on the use of ionic calcium phosphate cements, has been developed to synthesize hydroxyapatite. Cements were prepared from tetracalcium phosphate, α–tricalcium phosphate, phosphoric acid, strontium nitrate, and water. They were then mixed and shaped. Cements with various amounts of strontium and different (Ca + Sr)/P atomic ratios were prepared. All the materials obtained were coherent and solid. When the amount of strontium was low, mixed hydroxyapatite was obtained at low temperatures. Mixed calcium strontium apatite was obtained after heating. This original method can be of interest in various fields such as biomaterials or the storage of radioactive waste.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Elliott, J.C., in Structure and Chemistry of the Apatites and Other Calcium Orthophosphates. Studies in Organic Chemistry, 18 (Elsevier Science B.V., 1994), p. 204.Google Scholar
2.Rey, C., Frèche, M., Heughebaert, M., Heughebaert, J.C., Lacout, J.L., Lebugle, A., Szylagyi, J., and Vignoles, M., Bioceramics 4, 57 (1991).CrossRefGoogle Scholar
3.Kawasaki, T., Niikura, M., Takahashi, S., and Kobayashi, W., Biochem. Int. 15, 1137 (1987).Google Scholar
4.Krefting, E.R., Frentzel, K., Tessarek, J., and Hohling, H.J., Scanning Microsc. 7, 203 (1993).Google Scholar
5.Rokita, E., Hermes, C., Nolting, H.F., and Ryczek, J., J. Cryst. Growth 130, 543 (1993).CrossRefGoogle Scholar
6.Grynpas, M.D., Hamilton, E., Cheung, R., Tsouderos, Y., Deloffre, P., Hott, M., and Marie, P.J., Bone 18, 253 (1996).CrossRefGoogle ScholarPubMed
7.Herbison, R.J. and Handelman, S.L., J. Dent. Res. 54, 1107 (1975).CrossRefGoogle Scholar
8.Anderson, P. and Elliott, J.C., J. Dent. Res. 71, 1473 (1992).CrossRefGoogle Scholar
9.Christoffersen, J., Christoffersen, M.R., Kolthoff, N., and Barenholdt, O., Bone 204, 47 (1997).CrossRefGoogle Scholar
10.Aoki, H., Okayama, S., and Akao, M., Bioceramics 4, 87 (1991).CrossRefGoogle Scholar
11.Carpéna, J. and Lacout, J.L., Actual. Chim. (Paris) 2, 3 (1997).Google Scholar
12.Yokogawa, Y., Toriyama, M., Kawamoto, Y., Suzuki, T., Nishizawa, K., Nagata, F., and Mucalo, R., Chem. Lett. 91 (1995).Google Scholar
13.Schnell, E., Kiesewetter, W., Kim, Y.H., and Hayek, E., Monatsh. Chem. 102, 1327 (1971).CrossRefGoogle Scholar
14.Kikuchi, M., Yamasaki, A., Otsuka, R., Akao, M., and Aoki, H., J. Solid State 113, 373 (1994).CrossRefGoogle Scholar
15.Fujino, O., Bull. Chem. Soc. Jpn. 48, 1455 (1975).CrossRefGoogle Scholar
16.Lacout, J.L., Nounah, A., and Ferhat, M., Ann. Chim. (Paris) 23, 57 (1998).CrossRefGoogle Scholar
17.Donazzon, B., Dechambre, G., and Lacout, J.L., Ann. Chim. (Paris) 23, 53 (1998).CrossRefGoogle Scholar
18.Osaka, Y., Miura, Y., Takeuchi, K., Asada, M., and Takahashi, K., J. Mater. Sci., Mater. Med. 2, 51 (1991).CrossRefGoogle Scholar
19.Brown, W.E. and Chow, L.C., J. Dent. Res. 62, 672 (1983).Google Scholar
20.Lacout, J.L., Mejdoubi, E., and Hamad, M., J. Mater. Sci., Mater. Med. 7, 371 (1996).CrossRefGoogle Scholar
21.Mejdoubi, E., Lacout, J.L., and Hamad, M., Bioceramics 8, 457 (1995).Google Scholar
22.Mirtchi, A., Lemaitre, J., and Terao, N., Biomaterials 11, 83 (1989).CrossRefGoogle Scholar
23.Mejdoubi, E., Lacout, J.L., Heughebaert, J.C., Michaud, P., and Rodriguez, F., Adv. Mater. Res. 12, 163 (1994).CrossRefGoogle Scholar
24.Hatim, Z., Frèche, M., and Lacout, J.L., Bioceramics 10, 375 (1997).Google Scholar
25.Lacout, J.L. and Mejdoubi, E., European Patent 92.09019-PCT/FR 93/00726.Google Scholar
26.Hatim, Z., Frèche, M., Kheribech, A., and Lacout, J.L., Ann. Chim. (Paris) 23, 65 (1998).CrossRefGoogle Scholar
27.Zineb, H., Thesis Institut National Polytechnique Toulouse, Toulouse, France (1998).Google Scholar
28.Lacout, J.L., Hatim, Z., and Frèche, M., French Patent 9803459 (1998).Google Scholar
29.Mejdoubi, E., Theses Institut National Polytechnique Toulouse, Toulouse, France (1993).Google Scholar
30.Kreidler, E.R. and Hummel, F.A., Inorg. Chem. 6, 884 (1966).CrossRefGoogle Scholar
31.Pascal, P., Nouveau traité de chimie minérale, t4 (1958), p. 191.Google Scholar
32.Heughebaert, J.C., Thesis I.N.P. Toulouse, Toulouse, France (1977).Google Scholar
33.Heughebaert, J.C. and Montel, G., C.R. Acad. Sci. Paris, 283, 573 (1976).Google Scholar