Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T01:27:30.507Z Has data issue: false hasContentIssue false

Preparation of cobalt nanowires in porous aluminum oxide: Study of the effect of barrier layer

Published online by Cambridge University Press:  03 July 2012

Mojgan Najafi
Affiliation:
Department of Physics, University of Kurdistan, Sanandaj, 66177-15175 Iran; and Department of Material Engineering, Hamedan University of Technology, Hamedan, 65169-13418 Iran
Saeid Soltanian*
Affiliation:
Department of Physics, University of Kurdistan, Sanandaj, 66177-15175 Iran
Habibollah Danyali
Affiliation:
Department of Electrical Engineering, University of Kurdistan, Sanandaj, 66177-15175 Iran
Rahman Hallaj
Affiliation:
Department of Chemistry, University of Kurdistan, Sanandaj, 66177-15175 Iran
Abdollah Salimi
Affiliation:
Department of Chemistry, University of Kurdistan, Sanandaj, 66177-15175 Iran
Seyed Mohammad Elahi
Affiliation:
Department of Physics, Science and Research Branch, Islamic Azad University, Tehran 775-14515, Iran
Peyman Servati
Affiliation:
Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, V6T1Z4 Canada
*
a)Address all correspondence to this author. e-mail: saeid@ece.ubc.ca; s.soltanian@gmail.com
Get access

Abstract

High-density cobalt (Co) nanowires (NWs) were fabricated using porous anodized aluminum oxide as a template. Measurement results show a high magnetic performance for NWs with a coercivity of about 1750 Oe and strong magnetic anisotropy with an easy axis parallel to the NW direction. We have investigated the effect of alternating current (AC) electrodeposition frequency on the magnetic properties of NW samples. We show that understanding the effect of barrier layer is critical for controlling the rate of NW electrodeposition. A circuit model is proposed that accurately describes the role of the barrier and interfacial layers during deposition. Results obtained by simulation of the circuit show an excellent agreement with experimental results for different frequencies and voltages. It is shown that the amount of electrodeposited material can be estimated based on the difference between the anodic and cathodic half cycles in the electrodeposited current. Use of higher frequency leads to more symmetrical half cycles and smaller electrodeposited material.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nielsch, K., Wehrspohn, R.B., Barthel, J., Kirschner, J., Gosele, U., Fischer, S.F., and Kronmuller, H.: Hexagonally ordered 100 nm period nickel nanowire arrays. Appl. Phys. Lett. 79, 1360 (2001).CrossRefGoogle Scholar
2.Dubois, S., Beuken, J.M., Piraux, L., Duvail, J.L., Fert, A., George, J.M., and Maurice, J.L.: Perpendicular giant magnetoresistance of NiFe/Cu and Co/Cu multilayered nanowires. J. Magn. Magn. Mater. 165, 30 (1997).CrossRefGoogle Scholar
3.Blondel, A., Meier, J.P., Doudin, B., and Ansermet, J.P.: Giant magnetoresistance of nanowires of multilayers. Appl. Phys. Lett. 65, 3019 (1994).CrossRefGoogle Scholar
4.Varghese, O.K., Gong, D., Dreschel, W.R., Ong, K.G., and Grimes, C.A.: Ammonia detection using nanoporous alumina resistive and surface acoustic wave sensors. Sens. Actuators, B 94, 27 (2003).CrossRefGoogle Scholar
5.Chakraborty, S., Hara, K., and Lai, P.T.: New microhumidity field-effect transistor sensor in ppm(v) level. Rev. Sci. Instrum. 70, 1565 (1999).CrossRefGoogle Scholar
6.Xu, H., Qin, D.H., Yang, Z., and Li, H.L.: Fabrication and characterization of highly ordered zirconia nanowire arrays by sol-gel template method. Mater. Chem. Phys. 80, 524 (2003).CrossRefGoogle Scholar
7.Matsumoto, F., Nishio, K., and Masuda, H.: Flow-through-type DNA array based on ideally ordered anodic porous alumina substrate. Adv. Mater. 16, 23 (2004).CrossRefGoogle Scholar
8.Ono, S., Saito, M., Ishiguro, M., and Asoh, H.: Controlling factor of self-ordering of anodic porous alumina. J. Electrochem. Soc. 151, B473 (2004).CrossRefGoogle Scholar
9.Chu, S.Z., Inoue, S., Wada, K., Hishita, S., and Kurashima, K.: Self-organized nanoporous anodic titania films and ordered titania nanodots/nanorods on glass. Adv. Funct. Mater. 15, 1343 (2005).CrossRefGoogle Scholar
10.Lim, J.R., Whitacre, J.F., Fleurial, J.P., Huang, C.K., Ryan, M.A., and Myung, N.V.: Fabrication method for thermoelectric nanodevices. Adv. Mater. 17, 1488 (2005).CrossRefGoogle Scholar
11.Peng, Y., Qin, D.H., Zhou, R.J., and Li, H.L.: Bismuth quantum-wires arrays fabricated by electrodeposition in nanoporous anodic aluminum oxide and its structural properties. Mater. Sci. Eng., B 77, 246 (2000).CrossRefGoogle Scholar
12.Zheng, M.J., Zhang, L.D., Zhang, X.Y., Zhang, J., and Li, G.H.: Fabrication and optical absorption of ordered indium oxide nanowire arrays embedded in anodic alumina membranes. Chem. Phys. Lett. 334, 298 (2001).CrossRefGoogle Scholar
13.Choi, J., Luo, Y., Wehrspohn, R.B., Hillebrand, R., Schilling, J., and Gosele, U.: Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers. J. Appl. Phys. 94, 4757 (2003).CrossRefGoogle Scholar
14.Martin, C.R.: Nanomaterials: A membrane-based synthetic approach. Science 266, 1961 (1994).CrossRefGoogle ScholarPubMed
15.Shingubara, S.: Fabrication of nanomaterials using porous alumina templates. J. Nanopart. Res. 5, 17 (2003).CrossRefGoogle Scholar
16.Hulteen, J.C. and Martin, C.R.: A general template-based method for the preparation of nanomaterials. J. Mater. Chem. 7, 1075 (1997).CrossRefGoogle Scholar
17.Yoon, H., Deshpande, D.C., Ramachandran, V., and Varadan, V.K.: Aligned nanowire growth using lithography-assisted bonding of a polycarbonate template for neural probe electrodes. Nanotechnology 19, 025304 (2008).CrossRefGoogle ScholarPubMed
18.Schonenberger, C., vanderZande, B.M.I., Fokkink, L.G.J., Henny, M., Schmid, C., Kruger, M., Bachtold, A., Huber, R., Birk, H., and Staufer, U.: Template synthesis of nanowires in porous polycarbonate membranes: Electrochemistry and morphology. J. Phys. Chem. B 101, 5497 (1997).CrossRefGoogle Scholar
19.Masuda, H., Hasegwa, F., and Ono, S.: Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. J. Electrochem. Soc. 144, L127 (1997).CrossRefGoogle Scholar
20.Masuda, H., Ohya, M., Asoh, H., Nakao, M., Nohtomi, M., and Tamamura, T.: Photonic crystal using anodic porous alumina. Jpn. J. Appl. Phys., Part 2 38, L1403 (1999).CrossRefGoogle Scholar
21.Masuda, H. and Fukuda, K.: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466 (1995).CrossRefGoogle ScholarPubMed
22.Nicewarner-Pena, S.R., Freeman, R.G., Reiss, B.D., He, L., Pena, D.J., Walton, I.D., Cromer, R., Keating, C.D., and Natan, M.J.: Submicrometer metallic barcodes. Science 294, 137 (2001).CrossRefGoogle ScholarPubMed
23.Tian, M.L., Wang, J.U., Kurtz, J., Mallouk, T.E., and Chan, M.H.W.: Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Lett. 3, 919 (2003).CrossRefGoogle Scholar
24.Hebard, F., Ajuria, S.A., and Eick, R.H.: Interface contribution to the capacitance of thin-film Al-Al2O3-Al trilayer structures. Appl. Phys. Lett. 51, 1349 (1987).CrossRefGoogle Scholar
25.Brevnov, D.A., Rama Rao, G.V., López, G.P., and Atanassov, P.B.: Dynamics and temperature dependence of etching processes of porous and barrier aluminum oxide layers. Electrochim. Acta 49, 2487 (2004).CrossRefGoogle Scholar
26.Sharma, G., Pishko, M.V., and Grimes, C.A.: Fabrication of metallic nanowire arrays by electrodeposition into nanoporous alumina membranes: Effect of barrier layer. J. Mater. Sci. 42, 4738 (2007).CrossRefGoogle Scholar
27.Shimizu, K., Kobayashi, K., Thompson, G.E., and Wood, G.C.: Development of porous anodic films on aluminum. Philos. Mag. A 66, 643 (1992).CrossRefGoogle Scholar
28.Jessensky, O., Muller, F., and Giosele, U.: Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 72, 1173 (1998).CrossRefGoogle Scholar
29.Masuda, H., Yamada, H., Satoh, M., Asoh, H., Nakao, M., and Tamamura, T.: Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 71, 2770 (1997).CrossRefGoogle Scholar
30.O’Sullivan, J.P. and Wood, G.C.: The morphology and mechanism of formation of porous anodic films on aluminum. Proc. R. Soc. London, Ser. A 317, 511 (1970).Google Scholar
31.Sellmyer, D.J., Zheng, M., and Skomski, R.: Magnetism of Fe, Co and Ni nanowires in self-assembled arrays. J. Phys. Condens. Matter 13, R433 (2001).CrossRefGoogle Scholar
32.Thompson, G.E. and Wood, G.C.: Anodic films on aluminum. in Corrosion: Aqueous Processes and Passive Films, Scully, J.C., ed. (Academic Press, New York, NY, 1983).Google Scholar
33.Vrublevsky, I., Parkoun, V., Sokol, V., and Schreckenbach, J.: Study of chemical dissolution of the barrier oxide layer of porous alumina films formed in oxalic acid using a re-anodizing technique. Appl. Surf. Sci. 236, 270 (2004).CrossRefGoogle Scholar
34.Vrublevsky, I., Parkoun, V., Sokol, V., Schreckenbach, J., and Marx, G.: The study of the volume expansion of aluminum during porous oxide formation at galvanostatic regime. Appl. Surf. Sci. 222, 215 (2004).CrossRefGoogle Scholar
35.Parkhutik, V.P. and Shershulsky, V.I.: Theoretical modeling of porous oxide growth on aluminum. J. Phys. D: Appl. Phys. 25, 1258 (1992).CrossRefGoogle Scholar
36.Yin, A.J., Li, J., Jian, W., Bennett, A.J., and Xu, J.M.: Fabrication of highly ordered metallic nanowire arrays by electrodeposition. Appl. Phys. Lett. 79, 1039 (2001).CrossRefGoogle Scholar
37.Almasi Kashi, M., Ramazani, A., and Khayyatian, A.: The influence of the ac electrodeposition conditions on the magnetic properties and microstructure of Co nanowire arrays. J. Phys. D: Appl. Phys. 39, 4130 (2006).CrossRefGoogle Scholar
38.Saedi, A. and Ghorbani, M.: Electrodeposition of Ni-Fe-Co alloy nanowire in modified AAO template. Mater. Chem. Phys. 91, 417 (2005).CrossRefGoogle Scholar
39.Almasi Kashi, M., Ramazani, A., Ghaffari, M., and Isfahani, V.B.: The effect of growth rate enhancement on the magnetic properties and microstructures of ac electrodeposited Co nanowires using nonsymmetric reductive/oxidative voltage. J. Cryst. Growth 311, 4581 (2009).CrossRefGoogle Scholar
40.Stoner, E.C. and Wohlfarth, E.P.: A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. London, Ser. A 240, 599642 (1948).Google Scholar