Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T11:10:08.308Z Has data issue: false hasContentIssue false

Preparation of DNA-immobilized magnetic particles and their utilization as an accumulative material of metal ions

Published online by Cambridge University Press:  12 February 2016

Masanori Yamada*
Affiliation:
Department of Chemistry, Faculty of Science, Okayama University of Science, Okayama 700-0005, Japan
Akira Fujisawa
Affiliation:
Department of Chemistry, Faculty of Science, Okayama University of Science, Okayama 700-0005, Japan
Kunimitsu Morishige
Affiliation:
Department of Chemistry, Faculty of Science, Okayama University of Science, Okayama 700-0005, Japan
Eiji Hosono
Affiliation:
Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
*
a) Address all correspondence to this author. e-mail: myamada@chem.ous.ac.jp
Get access

Abstract

DNA-immobilized Fe3O4 particles (DNA–Fe-particles) were prepared by mixing DNA, magnetic Fe3O4 particles, and the silane coupling reagent, bis[3-(trimethoxysilyl)propyl]amine. The DNA–inorganic hybrid material was uniformly immobilized onto magnetic Fe3O4 particles with the diameters of approximately 450 nm. These DNA–Fe-particles were stable in water. Additionally, we could simply collect the DNA–Fe-particles by a magnet from an aqueous solution. Therefore, we demonstrated the accumulation of various metal ions, such as heavy and rare-earth metal ions, by the DNA–Fe-particles. As a result, although these DNA–Fe-particles could selectively accumulate heavy and rare-earth metal ions, these materials could not accumulate the light metal ions, such as Mg(II) and Ca(II) ions. Furthermore, the metal ion-accumulated DNA–Fe-particles could be recycled by washing them with an aqueous ethylenediaminetetraacetic acid solution.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Adrian B. Mann

References

REFERENCES

Saenger, W.: Principles of Nucleic Acid Structure (Springer-Verlag: Berlin, 1987).Google Scholar
Waring, M.J.: DNA modification and cancer. Annu. Rev. Biochem. 50, 159 (1981).CrossRefGoogle ScholarPubMed
Liu, X.D., Yamada, M., Matsunaga, M., and Nishi, N.: Functional materials derived from DNA. Adv. Polym. Sci. 209, 149 (2007).Google Scholar
Liu, X.D., Diao, H.Y., and Nishi, N.: Applied chemistry of natural DNA. Chem. Soc. Rev. 37, 2745 (2008).CrossRefGoogle ScholarPubMed
Yamada, M., Kato, K., Shindo, K., Nomizu, M., Haruki, M., Sakairi, N., Ohkawa, K., Yamamoto, H., and Nishi, N.: UV-irradiation-induced DNA immobilization and functional utilization of DNA on nonwoven cellulose fabric. Biomaterials 22, 3121 (2001).CrossRefGoogle ScholarPubMed
Yamada, M., Kato, K., Nomizu, M., Ohkawa, K., Yamamoto, H., and Nishi, N.: UV-irradiated DNA matrixes selectively bind endocrine disruptors with a planar structure. Environ. Sci. Technol. 36, 949 (2002).CrossRefGoogle ScholarPubMed
Okahata, Y., Kobayashi, T., Tanaka, K., and Shimomura, M.: Anisotropic electric conductivity in an aligned DNA cast film. J. Am. Chem. Soc. 120, 6165 (1998).CrossRefGoogle Scholar
Nakayama, H., Ohno, H., and Okahata, Y.: Intramolecular electron conduction along DNA strands and their temperature dependency in a DNA-aligned cast film. Chem. Commun. 22, 2300 (2001).CrossRefGoogle Scholar
Wang, L., Yoshida, J., Ogata, N., Sasaki, S., and Kajiyama, T.: Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)–cationic surfactant complexes: Large-scale preparation and optical and thermal properties. Chem. Mater. 13, 1273 (2001).CrossRefGoogle Scholar
Hung, Y.C., Lin, T.Y., Hsu, W.T., Chiu, Y.W., Wang, Y.S., and Fruk, L.: Functional DNA biopolymers and nanocomposite for optoelectronic applications. Opt. Mater. 34, 1208 (2012).CrossRefGoogle Scholar
Long, W., Zou, W., Li, X., and Chen, J.: DNA optical nanofibers: Preparation and characterization. Opt. Express 20, 18188 (2012).CrossRefGoogle ScholarPubMed
Yamada, M. and Goto, A.: Proton conduction of DNA-imidazole composite material under anhydrous condition. Polym. J. 44, 415 (2012).CrossRefGoogle Scholar
Lee, D.K., Won, J., and Hwang, S.S.: Effect of the matrix on proton conductivity in electrolyte membranes containing deoxyribonucleic acids. J. Membr. Sci. 328, 211 (2009).CrossRefGoogle Scholar
Yamada, M., Hara, S., Yamada, T., Katagiri, F., Hozumi, K., and Nomizu, M.: Double-stranded DNA stereoselectively promotes aggregation of amyloid-like fibrils and generates peptide/DNA matrices. Biopolymers 102, 465 (2014).CrossRefGoogle ScholarPubMed
Goukassian, D.A., Helms, E., Steeg, H., Oostrom, C., Bhawan, J., and Gilchrest, B.A.: Topical DNA oligonucleotide therapy reduces UV-induced mutations and photocarcinogenesis in hairless mice. Proc. Natl. Acad. Sci. U. S. A. 101, 3933 (2004).CrossRefGoogle ScholarPubMed
Seeman, N.C.: Nanomaterials based on DNA. Annu. Rev. Biochem. 79, 65 (2010).CrossRefGoogle ScholarPubMed
Roh, Y.H., Ruiz, R.C.H., Peng, S., Lee, J.B., and Luo, D.: Engineering DNA-based functional materials. Chem. Soc. Rev. 40, 5730 (2011).CrossRefGoogle ScholarPubMed
Stulz, E.: DNA architectonics: Towards the next generation of bio-inspired materials. Chem. - Eur. J. 18, 4456 (2012).CrossRefGoogle ScholarPubMed
Maeda, Y., Zinchenko, A., Lopatina, L.I., Sergeyev, V.G., and Murata, S.: Extraction of noble and rare-earth metals from aqueous solutions by DNA cross-linked hydrogels. ChemPlusChem 78, 619 (2013).CrossRefGoogle ScholarPubMed
Yamada, M. and Aono, H.: DNA-inorganic hybrid material as selective absorbent for harmful compounds. Polymer 49, 4658 (2008).CrossRefGoogle Scholar
Yamada, M. and Hamai, A.: Selective accumulation of harmful compounds by the DNA-inorganic hybrid-immobilized glass bead. Anal. Chim. Acta 674, 249 (2009).CrossRefGoogle Scholar
Yamada, M. and Abe, K.: Selective accumulation of rare earth metal and heavy metal ions by DNA-inorganic hybrid material. Polym. J. 46, 366 (2014).CrossRefGoogle Scholar
Smolensky, E.D., Peterson, K.L., Weitz, E.A., Lewandowski, C., and Pierre, V.C.: Magnetoluminescent light-switches: Dual modality in DNA detection. J. Am. Chem. Soc. 135, 8966 (2013).CrossRefGoogle ScholarPubMed
Wang, X., Zhuang, J., Peng, Q., and Li, Y.: Hydrothermal synthesis of rare-earth fluoride nanocrystals. Inorg. Chem. 45, 6661 (2006).CrossRefGoogle ScholarPubMed
Arai, T., Sato, T., Kanoh, H., Kaneko, K., Oguma, K., and Yanagisawa, A.: Organic–inorganic hybrid polymer-encapsulated magnetic nanobead catalysts. Chem. Eur. J. 14, 882 (2008).CrossRefGoogle ScholarPubMed
Nguyen, V.Q., Ishihara, M., Kinoda, J., Hattori, H., Nakamura, S., Ono, T., Miyahira, Y., and Matsui, T.: Development of antimicrobial biomaterials produced from chitin-nanofiber sheet/silver nanoparticle composites. J. Nanobiotechnol. 12, 49 (2014).CrossRefGoogle ScholarPubMed
Li, H., Bi, S., Liu, L., Dong, W., and Wang, X.: Separation and accumulation of Cu(II), Zn(II) and Cr(VI) from aqueous solution by magnetic chitosan modified with diethylenetriamine. Desalination 278, 397 (2011).CrossRefGoogle Scholar
Gai, S., Li, C., Yang, P., and Lin, J.: Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev. 114, 2343 (2014).CrossRefGoogle ScholarPubMed
Yu, Z., Zhang, X., and Huang, Y.: Magnetic chitosan–iron(III) hydrogel as a fast and reusable adsorbent for chromium(VI) removal. Ind. Eng. Chem. Res. 52, 11956 (2013).CrossRefGoogle Scholar
Vasilyeva, S.V., Vorotyntsev, M.A., Bezverkhyy, I., Lesniewska, E., Heintz, O., and Chassagnon, R.: Synthesis and characterization of palladium nanoparticle/polypyrrole composites. J. Phys. Chem. C 112, 19878 (2008).CrossRefGoogle Scholar
Qu, K., Wu, L., Ren, J., and Qu, X.: Natural DNA-modified graphene/Pd nanoparticles as highly active catalyst for formic acid electro-oxidation and for the Suzuki reaction. ACS Appl. Mater. Interfaces 4, 5001 (2012).CrossRefGoogle Scholar
Willard, M.A., Kurihara, L.K., Carpenter, E.E., Calvin, S., and Harris, V.G.: Chemically prepared magnetic nanoparticles. Int. Mater. Rev. 49, 125 (2004).CrossRefGoogle Scholar
Cotton, F.A., Wilkinson, G., and Gauss, P.L.: Basic Inorganic Chemistry (John Wiley & Sons: New York, 1991).Google Scholar
Otomo, M.: Xylenol orange and its analogs. Bunseki Kagaku 21, 436 (1972).Google Scholar
Tajmir-Riahi, H.A., Naoui, M., and Ahimad, R.: The effects of Cu2+ and Pb2+ on the solution structure of calf thymus DNA: DNA condensation and denaturation studied by Fourier transform ir difference spectroscopy. Biopolymers 33, 1819 (1993).CrossRefGoogle ScholarPubMed
Banyay, M. and Sarkaräslund, A.: A library of IR bands of nucleic acids in solution. Biophys. Chem. 104, 477 (2003).CrossRefGoogle ScholarPubMed
Plueddemann, E.P.: Silane Coupling Agents, 2nd ed. (Plenum Press: New York, 1991).CrossRefGoogle Scholar
Vince, J., Orel, B., Vilčnik, A., Fir, M., Vuk, A.S., Jovanovski, V., and Simončič, B.: Structural and water-repellent properties of a urea/poly(dimethylsiloxane) sol–gel hybrid and its bonding to cotton fabric. Langmuir 22, 6489 (2006).CrossRefGoogle ScholarPubMed
Ulman, A.: An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self-Assembly (Academic Press: San Diego, 1991).Google Scholar
Lippard, S.J. and Berg, J.M.: Principles of Bioinorganic Chemistry (University of Science Books, Mill Valley, 1994).Google Scholar
Hadjiliadis, N. and Sletten, E.: Metal Complex-DNA Interactions (John Wiley & Sons, Hong Kong, 2009).CrossRefGoogle Scholar
Biver, T.: Stabilisation of non-canonical structures of nucleic acids by metal ions and small molecules. Coord. Chem. Rev. 257, 2765 (2013).CrossRefGoogle Scholar
Scharf, P. and Müller, J.: Nucleic acids with metal-mediated base pairs and their applications. ChemPlusChem 78, 20 (2013).CrossRefGoogle Scholar
Lo, I.M.C. and Yang, X.Y.: EDTA extraction of heavy metals from different soil fractions and synthetic soils. Water, Air, Soil Pollut. 109, 219 (1999).CrossRefGoogle Scholar