Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T14:51:12.915Z Has data issue: false hasContentIssue false

Preparation of epitaxial SrBi2Nb2O9 and SrBi2Ta2O9 thin films by the coating-pyrolysis process

Published online by Cambridge University Press:  31 January 2011

T. Nagahama
Affiliation:
National Institute of Materials and Chemical Research, Higashi 1-1, Tsukuba, Ibaraki 305-8565, Japan
T. Manabe
Affiliation:
National Institute of Materials and Chemical Research, Higashi 1-1, Tsukuba, Ibaraki 305-8565, Japan
I. Yamaguchi
Affiliation:
National Institute of Materials and Chemical Research, Higashi 1-1, Tsukuba, Ibaraki 305-8565, Japan
T. Kumagai
Affiliation:
National Institute of Materials and Chemical Research, Higashi 1-1, Tsukuba, Ibaraki 305-8565, Japan
S. Mizuta
Affiliation:
National Institute of Materials and Chemical Research, Higashi 1-1, Tsukuba, Ibaraki 305-8565, Japan
T. Tsuchiya
Affiliation:
Department of Materials Science and Technology, Science University of Tokyo, Yamazaki 2641, Noda, Chiba 278-0022, Japan
Get access

Abstract

Epitaxial and polycrystalline thin films of bismuth layer-structured ferroelectrics, SrBi2Nb2O9 (SBN) and SrBi2Ta2O9 (SBT), were prepared on single-crystal SrTiO3(001) and polycrystalline yttria-stabilized zirconia substrates, respectively, by the coating-pyrolysis process. The epitaxial relationship of the films and substrates was SBN, SBT (001)//SrTiO3(001) and SBN, SBT [100]//SrTiO3[100],[010], where pseudotetragonal indices were adopted for SBN and SBT. The lattices of the epitaxial films were found to be slightly strained owing to stress from the substrate. Atomic force microscopy observations showed that the epitaxial films as well as polycrystalline films consisted of round-shaped, islandlike grains of submicrometer size.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Scott, J.F. and Araujo, C.A.P, Science 246, 1400 (1989).CrossRefGoogle Scholar
2.Scott, J.F., Araujo, C.A.P, and McMillan, L.D., Ferroelectrics 116, 107 (1989).CrossRefGoogle Scholar
3.Mihara, T., Watanabe, H., Araujo, C.A.P, Cuchiaro, J., Scott, M., and McMillan, L.D., Proc. 4th Int. Symp. Integrated Ferroelectrics 137 (1992).Google Scholar
4.Newnham, R.E., Wolfe, R.W., and Dorrian, J.F., Mater. Res. Bull. 6, 1029 (1971).CrossRefGoogle Scholar
5.Suzuki, M. and Ami, T., Mater. Sci. and Eng. B41, 166 (1996).CrossRefGoogle Scholar
6.Suzuki, M., J. Ceram. Soc. Jpn. 103, 1099 (1995).CrossRefGoogle Scholar
7.Tabata, H., Tanaka, H., and Kawai, T., Jpn. J. Appl. Phys. 34, 5416 (1995).Google Scholar
8.Zhu, Y., Desu, S.B., Li, T., Ramanathan, S., and Nagata, M., J. Mater. Res. 12, 783 (1997).CrossRefGoogle Scholar
9.Boyle, T.J., Buchheit, C.D., Rodriguez, M.A., Al-Shareef, H.N., Hermandez, B.A., Scott, B., and Ziller, J.W., J. Mater. Res. 11, 2274 (1996).CrossRefGoogle Scholar
10.Atuski, T., Soyama, N., Yonezawa, T., and Ogi, K., Jpn. J. Appl. Phys. 34, 5096 (1995).CrossRefGoogle Scholar
11.Amanuma, K., Hase, T., and Miyasaka, Y., Appl. Phys. Lett. 66, 221 (1995).CrossRefGoogle Scholar
12.Watanabe, H., Mihara, T., Yoshimori, H., and Araujo, C.A.P, Jpn. J. Appl. Phys. 34, 5240 (1995).CrossRefGoogle Scholar
13.Taylor, D.J., Jones, R.E., Zurcher, P., Chu, P., Lii, Y.T., Jiang, B., and Gillespie, S.J., Appl. Phys. Lett. 68, 2300 (1996).CrossRefGoogle Scholar
14.Desu, S.B., Vijay, D.P., Zhang, X., and He, B.P., Appl. Phys. Lett. 69, 1719 (1996).CrossRefGoogle Scholar
15.Song, T.K., Lee, J-K., and Jung, H.J., Appl. Phys. Lett. 69, 3839 (1996).CrossRefGoogle Scholar
16.Subbarao, E.C., J. Am. Ceram. Soc. 45, 166 (1962).CrossRefGoogle Scholar