Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T04:06:33.407Z Has data issue: false hasContentIssue false

Preparation of γ–Fe2O3 nanoparticles from a nonaqueous precursor

Published online by Cambridge University Press:  31 January 2011

P. Deb
Affiliation:
Department of Metallurgy, Bengal Engineering College (D.U.), Howrah-711 103, India
A. Basumallick
Affiliation:
Department of Metallurgy, Bengal Engineering College (D.U.), Howrah-711 103, India
Get access

Abstract

Nanosized particles of γ–Fe2O3 were prepared by heat treatment of the precipitates, obtained from a homogeneous solution of stearic acid and hydrated iron(III) nitrate. The compositional and thermal characteristics of the precipitates were studied with the aid of infrared spectroscopy and differential scanning calorimetry. The x-ray diffraction and small-angle x-ray scattering investigation shows that γ–Fe2O3 nanoparticles with narrow size distribution can be prepared successfully by this route.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ennas, G., Marongiu, G., Musinu, A., Falqui, A., Ballirano, P., and Caminiti, R., J. Mater. Res. 14,1570 (1999).CrossRefGoogle Scholar
2.Morales, M. P., Andres-Verges, M., Veintemillas-Verdaguer, S., .Montero, M.I, and Serna, C. J., J. Magn. Magn. Mater. 203,146 (1999).CrossRefGoogle Scholar
3.Dormann, J. L., Deb, P., and Basumallick, A., J. Magn. Magn. Mater. 203, 23 (1999).CrossRefGoogle Scholar
4.Grimm, S., Schultz, M., Barth, S., and Muller, R., J. Mater. Sci. 32, 1083 (1997).CrossRefGoogle Scholar
5.Cowbern, R. P., Moulinand, A. M., and Welland, M. E., Appl. Phys. Lett. 71, 2202 (1997).CrossRefGoogle Scholar
6.Ishikawa, T., Takeda, T., and Kandori, K., J. Mater. Sci. 27, 4531 (1992).CrossRefGoogle Scholar
7.Lounansmaa, O. V., Phys. Scr. 66, 70 (1996).CrossRefGoogle Scholar
8.Davies, S. C., Ni, C., Fardyu, J., and Rassi, D., J. Med. Eng. Technol. 18, 127 (1994).CrossRefGoogle Scholar
9.Glatter, O. and Kratky, O., Small Angle X-ray Scattering(Academic Press, London, United Kingdom, 1982).Google Scholar
10.Guiner, A., Fournet, G., Walker, B. C., and Yudowith, L.K.Small Angle Scattering of X-Rays(Wiley, New York, 1955).Google Scholar
11.Wilson, M. K., in Determination of organic structures by physical methods, edited by Nachod, F.C. and Phillips, W.D. (Academic Press, New York, 1962), Vol. 2, Chapter 3, p. 181.Google Scholar
12.Ryder, J.R.Application of Absorption Spectroscopy of Organic Compounds(Prentice Hall of India, New Delhi, India, 1987), p.22.Google Scholar
13.Miller, A., Arzeinmitel Forsch. 17, 921 (1967).Google Scholar
14.Morales, M. P., Percharroman, C., Carreno, T. Gonzales, and Serna, C.J., J. Solid State Chem. 108, 158 (1994).CrossRefGoogle Scholar
15.Sax, N. Irving and Lewis, R. J., Sr., Hawley's Condensed Chemical Dictionary, 11th ed. (CBS publication and distributors, New Delhi, India, 1990), p. 1091.Google Scholar
16.Enzo, S., Fagherazzi, G., Benedetti, A., and Polizzi, S., J. Appl. Crystallogr. 21, 536 (1988).CrossRefGoogle Scholar
17.Keijser, Th. H. DE, Mittemeijer, E., and Rozenda, H.C. F., J. Appl. Crystallogr. 16, 309 (1983).CrossRefGoogle Scholar
18.Sen, D., Deb, P., Mazumder, S., and Basumallick, A., Mater. Res. Bull. 35, 1243 (2000).CrossRefGoogle Scholar