Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T17:02:05.028Z Has data issue: false hasContentIssue false

Preparation of highly oriented Pb(Zr0.52Ti0.48)O3 thin films by sol-gel-hydrothermal process

Published online by Cambridge University Press:  31 January 2011

Jianming Zeng*
Affiliation:
National Laboratory of Functional Materials for Informatics, Shanghai Institute of Metallurgy, Chinese Academy of Sciences, 865 Changning Road, 200050 Shanghai, People's Republic of China
Chenglu Lin
Affiliation:
National Laboratory of Functional Materials for Informatics, Shanghai Institute of Metallurgy, Chinese Academy of Sciences, 865 Changning Road, 200050 Shanghai, People's Republic of China
Jinhua Li
Affiliation:
Department of Applied Chemistry, Jiangsu Institute of Petrochemical Technology, 213016 Changzhou, People's Republic of China
Kun Li
Affiliation:
Department of Applied Chemistry, Jiangsu Institute of Petrochemical Technology, 213016 Changzhou, People's Republic of China
*
a) Address all correspondence to this author. e-mail: jmzeng@online.sh.cn
Get access

Abstract

A novel sol-gel-hydrothermal process for preparation of highly oriented thin films of Pb(Zr0.52Ti0.48)O3 is reported. Pb(Zr0.52Ti0.48)O3 thin films with fully (111) orientation were successfully prepared on platinized silicon substrates at low temperature (100–200 °C) by combining a conventional sol-gel process and hydrothermal method, i.e., sol-gel-hydrothermal technique. The x-ray rocking curve for the (111) reflection as measured by a high-resolution four-crystal diffractrometer showed a narrow full width at half-maximum value of 0.20° for the as-prepared films. A dense, pinhole-free, and uniform surface morphology was observed from atomic force microscopy images of the films. The low leakage current density of the prepared films was also found.

Type
Materials Communications
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Scott, J.F. and Paz de Araujo, C.A., Science 246, 1440 (1989).CrossRefGoogle Scholar
2.Swarz, S.L. and Wood, V.E., Condensed Matter News 1, 4 (1992).Google Scholar
3.Moazzami, R., Semicond. Sci. Technol. 10, 375 (1995).CrossRefGoogle Scholar
4.Larsen, P.K., Kampschoer, G.L., Vlenaers, M.J., Spierings, G.A., and Cuppens, R., Appl. Phys. Lett. 59, 611 (1991).CrossRefGoogle Scholar
5.Polla, D.L., Ye, C., and Tamagawa, T., Appl. Phys. Lett. 59, 3539 (1991).CrossRefGoogle Scholar
6.Chen, X.Y. and Liu, Z.G., Ferroelectrics 195, 175 (1997).CrossRefGoogle Scholar
7.Xu, W.P., Gu, M., Zheng, L.R., Xin, H.P., Cao, Z.C., Ocuyama, M., and Lin, C.L., Ferroelectrics 195, 199 (1997).CrossRefGoogle Scholar
8.Shimizu, M., Fujisawa, H., and Shiosake, T., J. Cryst Growth 174, 464 (1997).CrossRefGoogle Scholar
9.Miki, H., Ohji, Y., and Tachi, S., in Amorphous Insulating Thin Films, edited by Kanicki, J., Warren, W.L., Devine, R.A.B, and Matsumura, M. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA 1993) p. 535.Google Scholar
10.Saito, K., Choi, J.H., Fukuda, T., and Ohue, M., Jpn. J. Appl. Phys. 31, L1260 (1992).CrossRefGoogle Scholar
11.Klee, M., Eusemann, R., Brand, W., and van Hal, H., J. Appl. Phys. 72, 1566 (1992).CrossRefGoogle Scholar
12.Moon, J., Kerchner, J.A., Lebleu, J., Morrone, A.A., and Adair, J.H., J. Am. Ceram. Soc. 80, 2613 (1997).CrossRefGoogle Scholar
13.Yi, G., Wu, Z., and Sayer, M., J. Appl. Phys. 64, 2717 (1988).CrossRefGoogle Scholar
14.Kim, S.H., Kim, C.E., and Oh, Y.J., Thin Solid Films 305, 321 (1997).CrossRefGoogle Scholar
15.Kurchania, R. and Milne, S.J., J. Mater. Sci. 33, 659 (1998).CrossRefGoogle Scholar
16.Kawk, B.S., Noyd, E.P., and Erbil, A., Appl. Phys. Lett. 53, 1702 (1988).CrossRefGoogle Scholar
17.Kowk, C. and Desu, S.B., J. Mater. Res. 8, 339 (1993).CrossRefGoogle Scholar
18.Kiduh, H., Ogawa, T., Morimoto, A., and Shinizu, T., Appl. Phys. Lett. 58, 2910 (1991).CrossRefGoogle Scholar
19.Yoshimura, M., Yoo, S.E., Hayashi, M., and Ishizawa, N., Jpn. J. Appl. Phys. 28, 2007 (1989).CrossRefGoogle Scholar
20.Kojoyoshi, K., Sakabe, Y., and Yoshinura, M., Jpn. J. Appl. Phys. 36, 1209 (1997).CrossRefGoogle Scholar
21.Pilleux, M.E. and Fuenzalida, U.M., J. Appl. Phys. 74, 4664 (1993).CrossRefGoogle Scholar
22.Zeng, J., Song, S., Wang, L., Zhang, M., Zheng, L., and Lin, C., J. Am. Ceram. Soc. 82(2), (1999, in press).CrossRefGoogle Scholar
23.Ijima, K., Tomita, Y., Takayama, R., and Ueda, I., J. Appl. Phys. 60, 361 (1986).CrossRefGoogle Scholar
24.Kim, S.H., Choi, Y.S., and Kim, C.E., J. Mater. Res. 12, 1576 (1997).CrossRefGoogle Scholar
25.Lotgering, F.K., J. Inorg. Nucl. Chem. 9, 113 (1959).CrossRefGoogle Scholar