Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-14T05:48:06.888Z Has data issue: false hasContentIssue false

Preparation of magnetic and photocatalytic cenosphere deposited with Fe3O4/SiO2/Eu-doped TiO2 core/shell nanoparticles

Published online by Cambridge University Press:  24 November 2015

Hui Zhang*
Affiliation:
School of Textile & Materials, Xi'an Polytechnic University, Xi'an 710048, Shaanxi Province, China
Junli Zhang*
Affiliation:
School of Textile & Materials, Xi'an Polytechnic University, Xi'an 710048, Shaanxi Province, China
Runjun Sun
Affiliation:
School of Textile & Materials, Xi'an Polytechnic University, Xi'an 710048, Shaanxi Province, China
Yingxue Zhou
Affiliation:
School of Textile & Materials, Xi'an Polytechnic University, Xi'an 710048, Shaanxi Province, China
*
a)Address all correspondence to this author. e-mail: hzhangw532@163.com
Get access

Abstract

To obtain a floating and magnetically recyclable photocatalyst, nano-scaled Fe3O4 particles are first deposited on the surface of the KH-550 modified cenosphere under a hydrothermal condition. The Fe3O4 coated cenosphere is then loaded with a layer of globular-flower-like SiO2 particles by a precipitation method. The Fe3O4/SiO2 double-layer structured cenosphere is finally immobilized with TiO2 nanoparticles doped with rare earth element Eu3+ to enhance the photoactivity of TiO2 using titanium sulfate, urea, and polyvinylpyrrolidone by a hydrothermal treatment. The as-prepared cenosphere is systematically characterized by various characterization techniques. The properties of photocatalytic degradation of methylene blue dye are also investigated. Results show that after being doped with 0.1% Eu3+ ions in relation to Ti4+ ions, the photocatalytic degradation efficiency for the Fe3O4/SiO2/Eu-doped TiO2 coated cenosphere is significantly improved under both ultraviolet and visible light irradiations. The saturation magnetization of the Fe3O4/SiO2/Eu-doped TiO2 coated cenosphere increases to some degree.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, Z.L., Li, G.R., Ou, Y.N., Feng, Z.P., Qu, D.L., and Tong, Y.X.: Electrochemical deposition of Eu3+-doped CeO2 nanobelts with enhanced optical properties. J. Phys. Chem. C 115, 351356 (2011).Google Scholar
Sin, J.C., Lam, S.M., Satoshib, I., Lee, K.T., and Mohamed, A.R.: Sunlight photocatalytic activity enhancement and mechanism of novel europium-doped ZnO hierarchical micro/nanospheres for degradation of phenol. Appl. Catal., B 148149, 258268 (2014).CrossRefGoogle Scholar
Al-Hamdi, A.M., Sillanpaa, M., and Dutta, J.: Photocatalytic degradation of phenol in aqueous solution by rare earth-doped SnO2 nanoparticles. J. Mater. Sci. 49, 51515159 (2014).CrossRefGoogle Scholar
Liu, H. and Yu, L.X.: Preparation and photoluminescence properties of europium ions doped TiO2 nanocrystals. J. Nanosci. Nanotechnol. 13, 51195125 (2013).Google Scholar
Wang, Y.R., Guo, Y.J., Wang, G.J., and Wang, F.: Investigation of Eu-doped mesoporous titania phosphor with enhanced luminescence. J. Nanosci. Nanotechnol. 11, 31623170 (2011).CrossRefGoogle ScholarPubMed
Choi, J., Park, H., and Hoffmann, M.R.: Effects of single metal-ion doping on the visible-light photoreactivity of TiO2 . J. Phys. Chem. C 114, 783792 (2010).Google Scholar
Chen, D.M., Zhu, Q., Lv, Z.J., Deng, X.T., Zhou, F.S., and Deng, Y.X.: Microstructural and photocatatlytic properties of Eu-doped mesporous titanium dioxide nanopaticles by sol–gel method. Mater. Res. Bull. 47, 31293134 (2012).Google Scholar
Hsiao, R.C., Arul, D.S., Mangalaraj, D., and Juang, R.S.: Influence of Eu3+ doping on the degradation property of TiO2 nanostructures. J. Optoelectron. Adv. Mater. 12, 193198 (2010).Google Scholar
Shi, J.W., Cui, H.J., Zong, X., Chen, S.H., Chen, J.S., Xu, B., Yang, W.Y., Wang, L.Z., and Fu, M.L.: Facile one-pot synthesis of Eu, N-codoped mesoporous titania microspheres with yolk-shell structure and high visible-light induced photocatalytic performance. Appl. Catal., A 435436, 8692 (2012).Google Scholar
Puskelova, J., Michal, R., Caplovicova, M., Antoniadou, M., Caplovic, L., Plesch, G., and Lianos, P.: Hydrogen production by photocatalytic ethanol reforming using Eu- and S-doped anatase. Appl. Surf. Sci. 305, 665669 (2014).Google Scholar
Hirano, M. and Sato, S.: Hydrothermal synthesis of Nb- and Eu-co-substituted nanocrystalline anatase: EuxTi1–2xNbxO2 with photoluminescence and photocatalytic activity: Compositional dependence of multifunctional properties. J. Am. Ceram. Soc. 95, 34083414 (2012).Google Scholar
Paul, N. and Mohanta, D.: Effective optoelectronic and photocatalytic response of Eu3+-doped TiO2 nanoscale systems synthesized via a rapid condensation technique. J. Mater. Res. 28, 14711480 (2013).CrossRefGoogle Scholar
Bianco, A., Cacciotti, I., Fragala, M.E., Lamastra, F.R., Speghini, A., Piccinelli, F., Malandrino, G., and Gusmano, G.: Eu-doped titania nanofibers: Processing, thermal behaviour and luminescent properties. J. Nanosci. Nanotechnol. 10, 51835190 (2010).Google Scholar
Yao, S.H., Sui, C.C., and Shi, Z.L.: Preparation and characterization of visible-light-driven europium doped mesoporous titania photocatalyst. J. Rare Earths 29, 929933 (2011).Google Scholar
Zhang, C.M., Huo, S.Y., Shen, S.G., Jia, G., and Sun, J.: Controlled hydrolysis synthesis and luminescence properties of uniform TiO2 spheres with different titanium alkoxides. J. Nanosci. Nanotechnol. 13, 44564461 (2013).Google Scholar
Tang, J.T., Chen, X.M., Liu, Y., Gong, W., Peng, Z.S., Cai, T.J., Jin, L.W., and Deng, Q.: Europium-doped mesoporous anatase with enhanced photocatalytic activity toward elimination of gaseous methanol. J. Phys. Chem. Solids 73, 198203 (2012).Google Scholar
Chi, C.S., Choi, J., Jeong, Y., Lee, O.Y., and Oh, H.J.: Nitrogen and europium doped TiO2 anodized films with applications in photocatalysis. Thin Solid Films 519, 46764680 (2011).Google Scholar
Ding, S.J., Huang, F.Q., Mou, X.L., Wu, J.J., and Lu, X.J.: Mesoporous hollow TiO2 microspheres with enhanced photoluminescence prepared by a smart amino acid template. J. Mater. Chem. 21, 48884892 (2011).Google Scholar
Hirano, M. and Sato, S.: Effect of treatment temperature on the hydrothermal formation, phase, and photoluminescence property of Nb- and Eu-co-substituted anatase-type titania nanocrystals. Mater. Lett. 83, 186188 (2012).Google Scholar
Wei, Q.F. and Chen, Y.J.: One-step hydrothermal synthesis of TiO2 nanowires and their photocatalytic activities. Chem. J. Chin. Univ. 32, 24832489 (2011).Google Scholar
Wang, B., Li, Q., Wang, W., Li, Y., and Zhai, J.P.: Preparation and characterization of Fe3+-doped TiO2 on fly ash cenospheres for photocatalytic application. Appl. Surf. Sci. 257, 34733479 (2011).CrossRefGoogle Scholar
Zhan, J.C., Zhang, H., and Zhu, G.Q.: Magnetic photocatalysts of cenospheres coated with Fe3O4/TiO2 core/shell nanoparticles decorated with Ag nanopartilces. Ceram. Int. 40, 85478559 (2014).CrossRefGoogle Scholar
Lu, W.S., Shen, Y.H., Xie, A.J., and Zhang, W.Q.: Green synthesis and characterization of superparamagnetic Fe3O4 nanoparticles. J. Magn. Magn. Mater. 322, 18281833 (2010).Google Scholar
Anastasescu, C., Anastasescu, M., Teodorescu, V.S., Gartner, M., and Zaharescu, M.: SiO2 nanospheres and tubes obtained by sol–gel method. J. Non-Cryst. Solids 356, 26342640 (2010).CrossRefGoogle Scholar
Leostean, C., Stefan, M., Pana, O., Cadis, A.I., Suciu, R.C., Silipas, T.D., and Gautron, E.: Properties of Eu doped TiO2 nanoparticles prepared by using organic additives. J. Alloys. Compd. 575, 2939 (2013).Google Scholar
Mezzi, A., Kaciulis, S., Cacciotti, I., Bianco, A., Gusmano, G., Lamastra, F.R., and Fragala, M.E.: Structure and composition of electrospun titania nanofibres doped with Eu. Surf. Interface Anal. 42, 572575 (2010).Google Scholar
Feng, X., Yang, L., Zhang, N.C., and Liu, Y.L.: A facile one-pot hydrothermal method to prepare europium-doped titania hollow phosphors and their sensitized luminescence properties. J. Alloys. Compd. 506, 728733 (2010).CrossRefGoogle Scholar
Lin, X., Guan, Q.F., Zou, C.J., Liu, T.T., Zhang, Y., Liu, C.B., and Zhai, H.J.: Photocatalytic degradation of an azo dye using Bi3.25M0.75Ti3O12 nanowires (M = La, Sm, Nd, and Eu). Mater. Sci. Eng., B 178, 520526 (2013).Google Scholar
Lei, Y., Zhang, L.D., Meng, G.W., Li, G.H., Zhang, X.Y., Liang, C.H., Chen, W., and Wang, S.X.: Preparation and photoluminescence of highly ordered TiO2 nanowire arrays. Appl. Phys. Lett. 78, 11251127 (2001).Google Scholar
Yu, J.C., Yu, J., Ho, W., Jiang, Z., and Zhang, L.: Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 14, 38083816 (2002).CrossRefGoogle Scholar
Li, D., Haneda, H., Labhsetwar, N.K., Hishita, S., and Ohashi, N.: Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies. Chem. Phys. Lett. 401, 579584 (2005).Google Scholar
Cheng, K., Zhu, Y.F., Weng, W.J., Lin, J., and Wang, H.M.: Biocompatible Eu-doped TiO2 nanodot film with in-situ protein adsorption characterization property. Thin Solid Films 584, 912 (2015).Google Scholar
Agorku, E.S., Kuvarega, A.T., Mamba, B.B., Pandey, A.C., and Mishra, A.K.: Enhanced visible-light photocatalytic activity of multi-elements-doped ZrO2 for degradation of indigo carmine. J. Rare Earths 33, 498506 (2015).CrossRefGoogle Scholar
Chen, Y.L., Cao, X.X., Lin, B.Z., and Gao, B.F.: Origin of the visible-light photoactivity of NH3-treated TiO2: Effect of nitrogen doping and oxygen vacancies. Appl. Surf. Sci. 264, 845852 (2013).Google Scholar
Wang, R.F., Wang, F.M., An, S.L., Song, J.L., and Zhang, Y.: Y/Eu co-doped TiO2: Synthesis and photocatalytic activities under UV-light. J. Rare Earths 33, 154159 (2015).CrossRefGoogle Scholar
Liu, F. and Jiang, Z.Y.: First-principles study on the electronic and optical properties of the (Eu,N)-codoped anatase TiO2 photocatalyst. Acta. Phys. Sin-Ch. Ed. 62, 193103–1–5 (2013).Google Scholar
Li, C., Hou, Q.Y., Zhang, Z.D., and Zhang, B.: First-principles study on the doped concentration effect on electron lifespan and absorption spectrum of Eu-doping anatase TiO2 . Acta Phys. Sin. 61, 077102–1–6 (2012).Google Scholar
Yao, S.H., Zhang, Y.X., Shi, Z.L., and Wang, S.F.: An investigation on synthesis and photocatalytic properties of Eu-doped anatase TiO2 coated magnetite. J. Indian Chem. Soc. 90, 955962 (2013).Google Scholar
Franco, A. Jr., Pessoni, H.V.S., and Soares, M.P.: Room temperature ferromagnetism in Eu-doped ZnO nanoparticulate powders prepared by combustion reaction method. J. Magn. Magn. Mater. 355, 325330 (2014).Google Scholar
Supplementary material: File

Zhang supplementary material

Figures S1-S11 and Table S1

Download Zhang supplementary material(File)
File 13.6 MB