Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T16:37:07.478Z Has data issue: false hasContentIssue false

The preparation of metal-polymer composite materials using ultrasound radiation

Published online by Cambridge University Press:  31 January 2011

Shlomit Wizel
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
Ruslan Prozorov
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
Yair Cohen
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
Doron Aurbach
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
Shlomo Margel
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
Aharon Gedanken
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
Get access

Extract

Ultrasound radiation is used to prepare a composite material made of polymethylacrylate and amorphous iron nanoparticles. Two preparation methods are described, in which the monomer, methylacrylate, is the starting material. The magnetic properties of the composite material are measured and reveal a superparamagnetic behavior.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Suslick, K. S., Ultrasound: Its Chemical, Physical and Biological Effects (VCH Publishers, New York, Weinheim, 1988), Chap. 4.Google Scholar
2.Suslick, K. S., Choe, S-B., Cichowlas, A. A., and Grinstaff, M. W., Nature 353, 414 (1991).CrossRefGoogle Scholar
3.Grinstaff, M. W., Cichowlas, A. A., Choe, S. B., and Suslick, K. S., Ultrasonics 30, 168 (1992).CrossRefGoogle Scholar
4.Suslick, K. S., Hyeon, T., Fang, M., and Cichowlas, A. A., in Molecularly Designed Ultrafine/Nanostructured Materials, edited by Gonsalves, K. E., Chow, G-M., Xiao, T. D., and Cammarata, R. C. (Mater. Res. Soc. Symp. Proc. 351, Pittsburgh, PA, 1994), pp. 201206.Google Scholar
5.Suslick, K. S., Fang, M., Hyeon, T., and Cichowlas, A. A., in Molecularly Designed Ultrafine/Nanostructured Materials, edited by Gonsalves, K. E., Chow, G-M., Xiao, T. D., and Cammarata, R. C. (Mater. Res. Soc. Symp. Proc. 351, Pittsburgh, PA, 1994), pp. 443448.Google Scholar
6.Cao, X., Kataby, G., Koltypin, Yu., Prozorov, R., and Gedanken, A., J. Mater. Res. 10, 2952 (1995).CrossRefGoogle Scholar
7.Koltypin, Yu., Cao, X., Kataby, G., Prozorov, R., and Gedanken, A., J. Non-Cryst. Solids 201, 159 (1996).CrossRefGoogle Scholar
8.Cao, X., Prozorov, R., Koltypin, Yu., Kataby, G., Felner, I., and Gedanken, A., J. Mater. Res. 12, 402 (1997).CrossRefGoogle Scholar
9.Price, G. J., Adv. Sonochem. 1, 231 (1990).Google Scholar
10.Lindstrom, O. and Lamm, O., J. Phys. Colloid. Chem. 55, 1139 (1951).CrossRefGoogle Scholar
11.Henglein, A., Macromol. Chem. 14, 15 (1954).CrossRefGoogle Scholar
12.Donaldson, D. J., Farrington, M. D., and Kruus, P., J. Phys. Chem. 83, 3130 (1979).CrossRefGoogle Scholar
13.Kruus, P. and Patraboy, T. J., J. Phys. Chem. 89, 3379 (1985).CrossRefGoogle Scholar
14.Kruus, P., Ultrasonics 21, 201 (1983).CrossRefGoogle Scholar
15.Kruus, P., O'Neill, M., and Robertson, D., Ultrasonics 28, 304 (1990).CrossRefGoogle Scholar
16.Price, G. J., Smith, P. F., and West, P. J., Ultrasonics 29, 166 (1991).CrossRefGoogle Scholar
17.Price, G. J., Norris, D. J., and West, P. J., Macromolecules 25, 6447 (1992).CrossRefGoogle Scholar
18.Price, G. J. and Patel, A. M., Polymer 33, 4423 (1992).CrossRefGoogle Scholar
19.Dominy, R. N., Lewis, N. S., Bruce, J. A., Bookbinder, D. C., and Wrighton, M. S., J. Am. Chem. Soc. 104, 467 (1982).CrossRefGoogle Scholar
20.Bruce, J. A., Murahashi, T., and Wrighton, M. S., J. Phys. Chem. 86, 1552 (1982).CrossRefGoogle Scholar
21.Kao, W. H. and Kuwana, T., J. Am. Chem. Soc. 106, 473 (1984).CrossRefGoogle Scholar
22.Weisshaar, D. and Kuwana, T., J. Electroanal. Chem. 163, 395 (1984).CrossRefGoogle Scholar
23.Bartak, D. E., Kazee, B., Shimazu, K., and Kuwana, T., Anal. Chem. 58, 2756 (1986).CrossRefGoogle Scholar
24.Kost, M., Bartak, D. E., Kazee, B., and Kuwana, T., Anal. Chem. 60, 2379 (1988).CrossRefGoogle Scholar
25.Griffiths, C. H., O'Horo, M. P., and Smith, T. W., J. Appl. Phys. 50, 7108 (1979).CrossRefGoogle Scholar
26.Bose, C. S. C. and Rajeshwar, K., J. Electroanal. Chem. 333, 235 (1992).CrossRefGoogle Scholar
27.Chen, C. C., Bose, C. S. C., and Rajeshwar, K., J. Electroanal. Chem. 350, 161 (1993).CrossRefGoogle Scholar
28.Thomas, J. R., J. Appl. Phys. 37, 2914 (1966).CrossRefGoogle Scholar
29.Smith, T. W. and Wychick, D., J. Phys. Chem. 84, 1621 (1980).CrossRefGoogle Scholar
30.Tannenbaum, R., Flenniken, C. L., and Goldberg, E. F., J. Polym. Sci., B: Pol. Phys. 28, 2421 (1990).CrossRefGoogle Scholar
31.Bronstein, L. M., Sh. Mirzoeva, E., Valetsky, P. M., Solodovnikov, S. P., and Register, R. A., J. Mater. Chem. 5, 1197 (1995).CrossRefGoogle Scholar
32.Suslick, K. S., Fang, M., and Hyeon, T., J. Am. Chem. Soc. 118, 11960 (1996).CrossRefGoogle Scholar
33.Grinstaff, M. W., Salamon, M. B., and Suslick, K. S., Phys. Rev. B 48, 269 (1993).CrossRefGoogle Scholar
34.Shafi, K. V. P. M., Gedanken, A., Goldfarb, R. B., and Felner, I., J. Appl. Phys. (in press, 1997).Google Scholar
35.Sohn, B. H. and Cohen, R. E., Chem. Mater. 9, 264 (1997).CrossRefGoogle Scholar
36.Kataby, G., Prozorov, T., Koltypin, Yu., Sukenik, C. N., Ulman, A., and Gedanken, A., unpublished.Google Scholar
37.Suslick, K. S., Hyeon, T., and Fang, M., Chem. Mater. 8, 2172 (1996).CrossRefGoogle Scholar
38.Henglein, A. and Gutierrez, M., J. Phys. Chem. 94, 5169 (1990).CrossRefGoogle Scholar