Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T19:01:25.353Z Has data issue: false hasContentIssue false

Preparation of MoS2 thin films by chemical vapor deposition

Published online by Cambridge University Press:  03 March 2011

Woo Y. Lee
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6063
Theodore M. Besmann
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6063
Michael W. Stott
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6063
Get access

Abstract

The chemical vapor deposition (CVD) of MoS2 by reaction of H2S with molybdenum halides was determined to be thermodynamically favored over a wide range of temperature, pressure, and precursor concentration conditions as long as excess H2S was available. The thermochemical stability of H2S, MoF6, and MoCI5 was also assessed to address their suitability as precursors for the CVD of MoS2. The results from the thermodynamic analysis were used as guidance in the deposition of MoS2 thin films from MoF6 and H2S. The (002) basal planes of MoS2 films deposited above 700 K were preferentially oriented perpendicular to the substrate surface.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Sutor, P., MRS Bulletin, 24 (May 1991).CrossRefGoogle Scholar
2Imanishi, N., Kanamura, K., and Takehara, Z., J. Electrochem. Soc. 139, 2082 (1992).CrossRefGoogle Scholar
3Hilton, M. R. and Fleischauer, P. D., in New Materials Approaches to Tribology: Theory and Applications, edited by Pope, L. E., Fehrenbacher, L., and Winer, W. O. (Mater. Res. Soc. Symp. Proc. 140, Pittsburgh, PA, 1989), pp. 227238.Google Scholar
4Singer, I. L., in New Materials Approaches to Tribology: Theory and Applications, edited by Pope, L. E., Fehrenbacher, L., and Winer, W. O. (Mater. Res. Soc. Symp. Proc. 140, Pittsburgh, PA, 1989), pp. 215226.Google Scholar
5Donley, M. S., McDevitt, N. T., Hass, T. W., Murray, P. T., and Grant, J. T., Thin Solid Films 168, 335 (1989).CrossRefGoogle Scholar
6Bayer, R. G. and Trivedi, A. K., Metal Finishing, 47 (November 1977).Google Scholar
7Zelikman, A. N., Lobashev, B. P., Makarov, Y. V., and Sevost'yanova, G. I., Inorg. Mater. 12, 1367 (1976).Google Scholar
8Chatzitheodorou, G., Fiechter, S., Kunst, M., Luck, J., and Tributsch, H., Mater. Res. Bull. XXIII, 1261 (1988).CrossRefGoogle Scholar
9Pramanik, P. and Bhattacharya, S., Mater. Res. Bull. XXV, 15 (1990).CrossRefGoogle Scholar
10Mandal, K. C. and Mondal, A., J. Solid State Chem. 85, 176 (1990).CrossRefGoogle Scholar
11Hofmann, W. K., J. Mater. Sci. 23, 3981 (1988).CrossRefGoogle Scholar
12van Zomeren, A. A., Koegler, J. H., van der Put, P. J., and Schoonman, J., Solid State Ionics, 521 (1992).Google Scholar
13Christy, R. I. and Ludwig, H. R., Thin Solid Films 64, 223 (1979).CrossRefGoogle Scholar
14Moser, J. and Lévy, F., J. Mater. Res. 7, 734 (1992).CrossRefGoogle Scholar
15Moser, J. and Lévy, F., J. Mater. Res. 8, 206 (1993).CrossRefGoogle Scholar
16Bertrand, P. A., J. Mater. Res. 4, 180 (1989).CrossRefGoogle Scholar
17Lee, W. Y., Lackey, W. J., Agrawal, P. K., and Freeman, G. B., J. Am. Ceram. Soc. 74, 2649 (1991).CrossRefGoogle Scholar
18Hirai, T. and Hayashi, S., J. Mater. Sci. 17, 1320 (1982).CrossRefGoogle Scholar
19Stinton, D. P., Lackey, W. J., Rauf, R. J., and Besmann, T. M., Ceram. Eng. Sci. Proc, 668 (July-August 1984).CrossRefGoogle Scholar
20Eriksson, G. and Hack, K., Metall. Trans. B 21B, 1013 (1990).CrossRefGoogle Scholar
21SGTE (Scientific Group Thermodata Europe) Solution and Pure Substance Database was supplied by the developers of the Chem-Sage program, GTT mbH, Aachen, Germany.Google Scholar
22JANAF Thermochemical Tables: Parts I and II, 3rd ed., J. Physical and Chemical Reference Data 14 (1985).Google Scholar
23Barin, I., Thermochemical Data of Pure Substances: Parts I and II (VCH mbH, Weinheim, Fed. Rep. Ger., 1989).Google Scholar
24Massalski, T. B., Binary Alloy Phase Diagrams (American Society for Metals, Metals Park, OH, 1986).Google Scholar
25Mills, K. C., Thermodynamic Data for Inorganic Data for Sulphides, Selenides, and Tellurides (Butterworths, London, UK, 1974).Google Scholar
26Lackey, W. J., Hanigofsky, J. A., Shapiro, M. J., Carter, W. B., Hill, D. N., Barefield, E. K., Judson, E. A., O'Brien, D. F., Chung, Y. S., Moss, T. S., and More, K. L., in Proceedings of the 11th International Conference on CVD, edited by Spear, K. E. and Cullen, G. W. (The Electrochemical Society, Pennington, NJ, 1990), pp. 195210.Google Scholar
27Lee, W. Y., Strife, J. R., and Veltri, R. D., J. Am. Ceram. Soc. 75, 2200 (1992).CrossRefGoogle Scholar
28Powell, C. F., in Vapor Deposition, edited by Powell, C. F., Oxley, J. H., and Blocher, J. M. (John Wiley & Sons, Inc., New York, 1966), pp. 302305.Google Scholar
29Green, M. L. and Levy, R. A., J. Metals, 63 (June 1985).Google Scholar
30Stinton, D. P., Oak Ridge National Laboratory, Oak Ridge, TN (unpublished data).Google Scholar
31Inoue, S., Toyokura, N., Nakamura, T., Maeda, M., and Takagi, M., J. Electrochem. Soc. 130, 1603 (1983).CrossRefGoogle Scholar
32West, G. A. and Beeson, K. W., J. Electrochem. Soc. 135, 1752 (1988).CrossRefGoogle Scholar
33Madar, R. and Bernard, C., J. Phys. C5, 479 (1989).Google Scholar
34Raymont, M. E. D., Hydrocarbon Processing, 139 (July 1975).Google Scholar
35Reid, R. C., Prausnitz, J. M., and Sherwood, T. K., The Properties of Gases and Liquids, 3rd ed. (McGraw-Hill Book Company, New York, 1977).Google Scholar
36El-Mahalawy, S. H. and Evans, B. L., J. Appl. Crystallogr. 9, 403 (1976).CrossRefGoogle Scholar
37Touloukian, T. K., Kirby, R. K., Taylor, R. E., and Lee, T. Y. R., in Thermal Expansion (Plenum, New York), Vol. 13, Part 1, p. 154.Google Scholar