Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T07:56:36.573Z Has data issue: false hasContentIssue false

Preparation of nanocrystalline titania powder via aerosol pyrolysis of titanium tetrabutoxide

Published online by Cambridge University Press:  31 January 2011

P. P. Ahonen
Affiliation:
Aerosol Technology Group, VTT Chemical Technology, P.O. Box 1401, FIN-02044 VTT, Finland
E. I. Kauppinen
Affiliation:
Aerosol Technology Group, VTT Chemical Technology, P.O. Box 1401, FIN-02044 VTT, Finland
J. C. Joubert
Affiliation:
Laboratoire des Matériaux et du Génie Physique, ENSPG, Rue de la Houille-Blanche, Domaine Universitaire, BP 46, F-38402 Saint-Martin-D'Heres, France
J. L. Deschanvres
Affiliation:
Laboratoire des Matériaux et du Génie Physique, ENSPG, Rue de la Houille-Blanche, Domaine Universitaire, BP 46, F-38402 Saint-Martin-D'Heres, France
G. Van Tendeloo
Affiliation:
EMAT-University of Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
Get access

Abstract

Nanocrystalline titanium dioxide was prepared via aerosol pyrolysis of titanium alkoxide precursor at 200–580 °C in air and in nitrogen atmospheres. Powders were characterized by x-ray diffraction, thermogravimetric analysis, Brunauer–Emmett–Teller analysis, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, x-ray fluorescence, Raman and infrared spectroscopy, and Berner-type low-pressure impactor. The anatase phase transition was initiated at 500 °C in nitrogen and at 580 °C in air. Under other conditions amorphous powders were observed and transformed to nanocrystalline TiO2 via thermal postannealing. In air, smooth and spherical particles with 2–4-μm diameter were formed with an as-expected tendency to convert to rutile in the thermal postannealings. In nitrogen, a fraction of the titanium tetrabutoxide precursor evaporated and formed ultrafine particles via the gas-to-particle conversion. At 500 °C thermally stable anatase phase was formed in nitrogen. A specific surface area as high as 280 m2 g−1 was observed for an as-prepared powder.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kroschwitz, I. and Howe-Grant, M., Kirk-Othmer, Encyclopedia of Chemical Technology (John Wiley & Sons, New York, 1997), Vol. 24, pp. 235241.Google Scholar
2.Navrovsky, A. and Kleppa, O.J., J. Am. Ceram. Soc. 50, 626 (1967).CrossRefGoogle Scholar
3.Phase diagrams for ceramists, edited by Levine, E.M. (American Ceramic Society, Westerville, OH, 1975).Google Scholar
4.Edelson, L.H. and Glaeser, A.M., J. Am. Ceram. Soc. 71, 225 (1988).CrossRefGoogle Scholar
5.Ding, X-Z., Liu, X-H., and He, Y-Z., J. Mater. Sci. Lett. 15, 1789 (1996).CrossRefGoogle Scholar
6.Haro-Poniatowski, E., Rodríguez-Talavera, R., de la Cruz Heredia, M., Cano-Corona, O., and Arroyo-Murillo, R., J. Mater. Res. 9, 2102 (1994).CrossRefGoogle Scholar
7.Kumar, K-N.P, Keizer, K., Burggraaf, A.J., Okubo, T., Nagamoto, H., and Morooka, S., Nature 358, 48 (1992).CrossRefGoogle Scholar
8.MacKenzie, K.J.D, Trans. J. Br. Ceram. Soc. 74, 2934, 77–84 (1975).Google Scholar
9.Akhtar, M.K., Pratsinis, S.E., and Mastrangelo, S.V.R, J. Mater. Res. 9, 1241 (1994).CrossRefGoogle Scholar
10.Akhtar, M.K., Pratsinis, S.E., and Mastrangelo, S.V.R, J. Am. Ceram. Soc. 75, 3408 (1992).CrossRefGoogle Scholar
11.MacKenzie, K.J.D, Trans. J. Br. Ceram. Soc. 74, 121 (1975).Google Scholar
12.Shannon, R.D., and Pask, J.A., J. Am. Ceram. Soc. 48, 391 (1965).CrossRefGoogle Scholar
13.Nair, P., Mizukami, F., Okubo, T., Nair, J., Keizer, K., and Burggraaf, A.J., AIChE J. 43(11A), 2710 (1997).CrossRefGoogle Scholar
14.Ferroni, M., Guidi, V., Martinelli, G., Faglia, G., Nelli, P., and Sberveglieri, G., Nanostruct. Mater. 7, 709 (1996).CrossRefGoogle Scholar
15.Ollis, D.F., Pelizzetti, E., and Serpone, N., Environ. Sci. Technol. 5, 1523 (1991).Google Scholar
16.Brinker, C.J. and Scherer, G.W., Sol-gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, CA, 1990).Google Scholar
17.Visca, M. and Matijevic, E., J. Colloid Interf. Sci. 68, 308 (1979).CrossRefGoogle Scholar
18.Bekkerman, L.I., Dobrovol'skii, I.P., and Ivakin, A.A., Russ. J. Inorg. Chem. 21, 223 (1976).Google Scholar
19.Vallet-Regi, M., Peña, J., Martínez, A., and González-Calbet, J.M., J. Mater. Res. 8, 2336 (1993).CrossRefGoogle Scholar
20.Yoldas, B.E., J. Mater. Sci. 21, 1087 (1986).CrossRefGoogle Scholar
21.Okuyama, K., Kousaka, Y., Tohge, N., Yamamoto, S., Wu, J.J., Flagan, R.C., and Seinfeld, J.H., AIChE J. 32, 2010 (1986).CrossRefGoogle Scholar
22.Blandenet, G., Court, M., and Lagarde, Y., Thin Solid Films 77, 81 (1981).CrossRefGoogle Scholar
23.Yoldas, B.E., Appl. Opt. 21, 2960 (1982).CrossRefGoogle Scholar
24.Langlet, M., Walz, D., Marage, P., and Joubert, J.C., Thin Solid Films 221, 44 (1992).CrossRefGoogle Scholar
25.Yoldas, B.E., J. Mater. Sci. 21, 1087 (1986).CrossRefGoogle Scholar
26.Chen, J., Giao, L., Huang, J., and Yan, D., J. Mater. Sci. 31, 3497 (1996).CrossRefGoogle Scholar
27.Okuyama, K., Jeung, J-T., Kousaka, Y., Nguyen, H.V., Wu, J.W., and Flagan, R.C., Chem. Eng. Sci. 44, 1369 (1989).CrossRefGoogle Scholar
28.Kominami, H., Takada, Y., Yamagiwa, H., Kera, Y., Inoue, M., and Kera, Y., J. Mater. Sci. Lett. 15, 197 (1996).Google Scholar
29.Ishizawa, H., Sakurai, O., Mizutani, N., and Kato, M., Yogyo-Kyokai-Shi 93, 382 (1985).CrossRefGoogle Scholar
30.Messing, G.L., Zhang, S-C., and Jayanthi, G.V., J. Am. Ceram. Soc. 76, 2707 (1993).CrossRefGoogle Scholar
31.Gurav, A., Kodas, T., Pluym, T., and Xiong, Y., Aerosol Sci. Technol. 19, 411 (1993).CrossRefGoogle Scholar
32.Ingebrethsen, B.J., Matijevic, E., and Partch, R.E., J. Colloid Interf. Sci. 95, 228 (1983).CrossRefGoogle Scholar
33.Ingebrethsen, B.J. and Matijevic, E., J. Colloid Interface Sci. 100, 1 (1984).CrossRefGoogle Scholar
34.Durand-Keklikian, L. and Partch, R.E., J. Aerosol Sci. 19, 511 (1988).Google Scholar
35.Park, D.G. and Burlitch, J.M., Chem. Mater. 4, 500 (1992).CrossRefGoogle Scholar
36.Park, D.G. and Burlitch, J.M., J. Sol-Gel Sci. Technol. 6, 235 (1996).Google Scholar
37.Murugavel, P., Kalaiselvam, M., Raju, A.R., and Rao, C.N.R, J. Mater. Chem. 7, 1433 (1997).CrossRefGoogle Scholar
38.Rubio, J., Oteo, J.L., Villegas, M., and Duran, P., J. Mater. Sci. 32, 643 (1997).Google Scholar
39.Langlet, M. and Joubert, J.C., in Chemistry of Advanced Materials, edited by Rao, C.N.R (Blackwell Scientific, Cambridge, MA, 1992), pp. 5576.Google Scholar
40.CRC Handbook of Chemistry and Physics, 78th ed., edited by Lide, D.R. (CRC Press LLC, Boca Raton, FL, 1997).Google Scholar
41.Lang, R.J., J. Acoust. Soc. Am. 34, 6 (1962).CrossRefGoogle Scholar
42.Hillamo, R.E. and Kauppinen, E.I., Aerosol Sci. Technol. 14, 813 (1991).CrossRefGoogle Scholar
43.West, A.R., Solid State Chemistry and Its Application (John Wiley & Sons, New York, 1984).Google Scholar
44.Sing, K.S.W, Everett, D.H., Haul, R.A.W, Moscou, L., Pierotti, R.A., Rouquérol, J., and Siemieniewska, T., Pure Appl. Chem. 57, 603 (1985).Google Scholar
45.Jain, S., Skamser, D.J., and Kodas, T.T., Aerosol Sci. Technol. 27, 575 (1997).CrossRefGoogle Scholar
46.Comprehensive Inorganic Chemistry, edited by Bailar, J.C. and Trotman-Dickenson, A.F. (Pergamon Press, Oxford, United Kingdom, 1973).Google Scholar
47.Parker, J.C. and Siegel, R.W., Appl. Phys. Lett. 57, 943 (1990).CrossRefGoogle Scholar
48.Ahonen, P.P., Brown, D.P., Kauppinen, E.I., Tapper, U., Jokiniemi, J.K., Deschanvres, J.L., Joubert, J.C., and Van Tendeloo, G., Advanced Technologies for Particle Processing (American Institute of Chemical Engineers, New York, 1998), Vol. 1, pp. 205210.Google Scholar
49.Van Landuyt, J. and Amelinckx, S., Mater. Res. Bull. 5, 267 (1970).CrossRefGoogle Scholar
50.Bursill, L.A., Hyde, B.G., Terasaki, O., and Watanabe, D., Philos. Mag. 20(164), 347 (1969).CrossRefGoogle Scholar
51.Bursill, L.A. and Smith, D.J., Nature 309, 319 (1984).Google Scholar