Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T03:26:44.271Z Has data issue: false hasContentIssue false

Preparation of Pb(Zr0.52Ti0.48)O3 thin films on Pt/RuO2 double electrode by a new sol-gel route

Published online by Cambridge University Press:  31 January 2011

Seung-Hyun Kim
Affiliation:
Department of Ceramic Eng., YonSei University, 134 Shinchon-dong, Seoul, 120–749, Korea
Yong-Soo Choi
Affiliation:
Department of Ceramic Eng., YonSei University, 134 Shinchon-dong, Seoul, 120–749, Korea
Chang-Eun Kim
Affiliation:
Division of Ceramics, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, 130–650, Korea
Get access

Abstract

Pb(Zr0.52Ti0.48)O3 (PZT) thin film on Pt/RuO2 double electrode was successfully prepared by using a new alkoxide-alkanolamine, sol-gel method. It was observed that the use of Pt/RuO2 double electrode reduced leakage current, resulting in a marked improvement in the leakage characteristics and more reliable capacitors. Typical P-E hysteresis behavior was observed even at low applied voltage of 5 V, manifesting greatly improved remanence and coercivity. Fatigue and breakdown characteristics, measured at 5 V, showed stable behavior, and no degradation in polarization was observed up to 1011 cycles.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Scott, J. F., Paz de Araujo, C. A., Melnick, B. M., Macmilan, L. D., and Zuleeg, R., J. Appl. Phys. 70 (1), 382 (1991).CrossRefGoogle Scholar
2.Hoffman, M., Goral, J. P., Al-jassim, M. M., and Echer, C., J. Vac. Sci. Technol. A 10 (4), 1584 (1992).CrossRefGoogle Scholar
3.Chen, J., Udayakumar, K. R., Brooks, K. G., and Cross, L. E., J. Appl. Phys. 71, 4465 (1992).CrossRefGoogle Scholar
4.Budd, K. D., Dey, S. K., and Payne, D. A., Br. Ceram. Proc. 36, 107 (1985).Google Scholar
5.Kondo, I., Yoneyama, T., and Takenaka, O., J. Vac. Sci. Technol. A 10, 3456 (1992).CrossRefGoogle Scholar
6.Al-Shareef, H. N., Auciello, O., Bellur, K. R., and Kingon, A. I., Appl. Phys. Lett. 66 (2), 239 (1995).CrossRefGoogle Scholar
7.Ramesh, R., Dutta, B., Ravi, T. S., Lee, J., Sands, T., and Keramidas, V. G., Appl. Phys. Lett. 64 (12), 1588 (1994).CrossRefGoogle Scholar
8.Lakeman, C. D. E. and Payne, D. A., J. Am. Ceram. Soc. 75 (11), 3091 (1982).CrossRefGoogle Scholar
9.Blum, J. B. and Gurkovichi, S. R., J. Mater. Sci. 20, 122 (1985).CrossRefGoogle Scholar
10.Kim, S. H., Kim, C. E., and Oh, Y. J., J. Mater. Sci. 30, 5643 (1995).Google Scholar
11.Takahashi, Y. and Yamaguchi, K., J. Mater. Sci. 25, 3950 (1995).CrossRefGoogle Scholar
12.Tohge, N., Takashi, S., and Minami, T., J. Am. Ceram. Soc. 74 (1), 67 (1991).CrossRefGoogle Scholar
13.Sanchez, C., Livage, J., Henry, M., and Babonneau, F., J. Non-Cryst. Solids 100, 65 (1988).CrossRefGoogle Scholar