Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T17:39:18.984Z Has data issue: false hasContentIssue false

Preparation of perovskite oxides for high Tc superconductor substrates

Published online by Cambridge University Press:  31 January 2011

C. D. Brandle
Affiliation:
AT & T Bell Laboratories, Murray Hill, New Jersey 07974
V. J. Fratello
Affiliation:
AT & T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

A variety of materials of the general type A2BB′O6 that have an ordered perovskite structure have been prepared and examined as possible substrate candidates for high Tc superconducting films. Materials containing either Ca or Sr as the A cation and either Ga or Al in combination with Nb or Ta as the B and B′ cations have been shown to be congruent melting compounds. These compounds have melting points easily accessible using conventional rf heating techniques and are therefore materials that could possibly be grown in bulk form using the Czochralski growth technique.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bednorz, J. G. and Müller, K. A., Z. Physik B64, 189 (1986).CrossRefGoogle Scholar
2Cava, R. J., van Dover, R. B., Batlogg, B., and Rietman, E. A., Phys. Rev. Lett. 58, 408 (1987).CrossRefGoogle Scholar
3Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. 27, 1209 (1988).CrossRefGoogle Scholar
4Cryst, J.. Growth 85 (4) (1987) and 91 (3) (1988).Google Scholar
5Chaudhari, P., Koch, R. H., Laibowitz, R. B., McGuire, T. R., and Gambino, R. J., Phys. Rev. Lett. 58, 2684 (1987).CrossRefGoogle Scholar
6Sandstrom, R. L., Giess, E. A., Gallagher, W. J., Segmüller, A., Cooper, E. I., Chisholm, M. F., Gupta, A., Shinde, S., and Laibowitz, R. B., Appl. Phys. Lett. 51, 1874 (1988).CrossRefGoogle Scholar
7Simon, R. W., Platt, C. E., Lee, A. E., Lee, G. S., Daly, K. P., Wire, M. S., Luine, J. A., and Urbanik, M., Appl. Phys. Lett. 53, 2677 (1989).CrossRefGoogle Scholar
8O'Bryan, H. M., Gallagher, P. K., Berkstresser, G. W., and Brandle, C. D., J. Mater. Res. 5, 183 (1990).CrossRefGoogle Scholar
9Chen, C. H., Kwo, J., and Hong, M., Appl. Phys. Lett. 52, 841 (1988).CrossRefGoogle Scholar
10Roy, R., J. Am. Ceram. Soc. 37 (12), 581 (1954).CrossRefGoogle Scholar
11Galasso, F., Katz, L., and Ward, R., J. Am. Ceram. Soc. 81, 820 (1959).Google Scholar
12Filip'ev, V. S. and Fesenko, E. G., Soviet Physics-Crystallography 10 (3), 243 (1965).Google Scholar
13Galasso, F., Borrante, J. R., and Katz, L., J. Am. Ceram. Soc. 83, 2830 (1961).Google Scholar
14Belyaev, I. N., Medvedeva, L. I., Fesenko, E. G., and Kupriyanov, M. F., Izv. Akad. Nauk SSSR Neorg. Mater. 1, 6 (1965).Google Scholar
15Shannon, R. D. and Prewitt, C. T., Acta Cryst. B25, 925 (1969).CrossRefGoogle Scholar
16Nakamura, T. and Ishii, I., Mater. Res. Bull. 11, 1097 (1976).CrossRefGoogle Scholar