Hostname: page-component-5f745c7db-sbzbt Total loading time: 0 Render date: 2025-01-06T23:27:11.775Z Has data issue: true hasContentIssue false

Preparation of silica glass microspheres by sol-gel processing

Published online by Cambridge University Press:  31 January 2011

J.Y. Ding*
Affiliation:
Department of Ceramic Engineering and Graduate Center for Materials Research, University of Missouri–Rolla, Rolla, Missouri 65401
D.E. Day
Affiliation:
Department of Ceramic Engineering and Graduate Center for Materials Research, University of Missouri–Rolla, Rolla, Missouri 65401
*
a)Current address: Fiber Optic Materials Research Center, Rutgers University, Piscataway, New Jersey 08855–0909.
Get access

Abstract

A method for making glass microspheres by the sol-gel process has been developed. Porous silica microspheres were produced at temperatures as low as 500 °C and densified silica microspheres were prepared at 800 °C. The size of the microspheres was controlled by adjusting the feed rate of the raw materials and the frequency of the droplet generator so that uniform spheres were obtained. Glass microspheres prepared by this method were characterized by Nuclear Magnetic Resonance (NMR), Differential Thermal Analysis (DTA), Thermogravimetric Analysis (TGA), and optical microscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Hendricks, C. D., Glass Science and Technology (Academic Press, New York, 1984), Vol.2, pp. 149168.Google Scholar
2Wehrenberg, R. H., II, Materials Engineering 88 (10), 5863 (1987).Google Scholar
3Hendricks, C. C., Rosencwaig, A., Woerner, R. L., Koo, J. C., Dressier, J. L., Sherohman, J. W., Weinland, S. L., and Jeffries, M., J. Nucl. Mater. 85, 86, 107111 (1979).CrossRefGoogle Scholar
4Ehrhardt, G. J. and Day, D. E., Nucl. Med. Biol. 14 (3), 233242 (1987).Google Scholar
5Brinker, C. J. and Mukherjee, S. P., J. Mater. Sci. 16, 1980 (1981).CrossRefGoogle Scholar
6Klein, L. C., Gallo, T. A., and Garvey, G. J., J. Non-Cryst. Solids 63, 2333 (1984).CrossRefGoogle Scholar
7Brinker, C. J., Keefer, K. D., Schaefer, D. W., and Ashley, C. S., J. Non-Cryst. Solids 48, 4764 (1982).CrossRefGoogle Scholar
8Sakka, S., Treatise on Materials Science and Technology (Academic Press, New York, 1982), Vol. 22, pp. 129167.CrossRefGoogle Scholar
9Brinker, C. J. and Scherer, G. W., J. Non-Cryst. Solids 70, 301322 (1985).CrossRefGoogle Scholar
10Ding, J. Y., Master Thesis, Department of Ceramic Engineering, University of Missouri-Rolla, 1988.Google Scholar
11Lindblad, N. R. and Schneider, J. M., J. Sci. Instrum. 42, 635638 (1965).CrossRefGoogle Scholar
12Wedding, J. B. and Stukel, J. J., Environmental Sci. & Tech. 8 (5), 456457 (1974).CrossRefGoogle Scholar
13Wedding, J. B., Environmental Sci. & Tech. 9. (7), 673674 (1975).CrossRefGoogle Scholar
14Hendricks, C. D. and Babil, S., J. Physics: Sci. Instrum. 5, 905910 (1972).Google Scholar
15Berglund, R. N. and Liu, B. Y., Environmental Sci. & Tech. 7 (2), 147153 (1973).CrossRefGoogle Scholar
16Pouxviel, J. C., Boilot, J. P., Beloeil, J. C., and Lallemand, J. Y., J. Non-Cryst. Solids 89, 345360 (1987).CrossRefGoogle Scholar
17Svensson, I. L., Sjoberg, S., and Ohman, L., J. Chem. Soc, Faraday Trans. I 82, 36353646 (1986).CrossRefGoogle Scholar
18Harris, R. and Knight, C. T. G., J. Chem. Soc, Faraday Trans. II 79, 15251561 (1983).CrossRefGoogle Scholar
19Sindorf, D. W. and Maciel, G. E., J. Am. Chem. Soc. 105, 14891493 (1983).Google Scholar
20Grimmer, A. R., Rosenberger, H., Burger, H., and Vogel, W., J. Non-Cryst. Solids 99, 371378 (1988).CrossRefGoogle Scholar
21Artaki, I., Bradley, M., Zerda, T. W., and Jonas, J., J. Phys. Chem. 89, 43994404 (1985).CrossRefGoogle Scholar
22Jonas, J., in Science of Ceramic Chemical Processing (John Wiley & Sons, 1986), pp. 6572.Google Scholar
23Brinker, C. J., Bunker, B. C., Tallant, D. R., Ward, K. J., and Kirkpatrick, R. J., in Inorganic and Organometallic Polymers (Am. Chem. Soc. Publishers, Washington, DC, 1988), pp. 315332.Google Scholar
24Kawaguchi, T., Iura, J., Taneda, N., Sishikura, H., and Kokubu, Y., J. Non-Cryst. Solids 82, 5056 (1986).CrossRefGoogle Scholar
25Klein, L. C., in Design of New Materials (Plenum Publishing, 1987), pp. 3965.CrossRefGoogle Scholar
26Prassas, M. and Hench, L. L., in Ultrastructure Processing of Ce-ramics, Glasses, and Composites (John Wiley & Sons, 1984), pp. 100125.Google Scholar
27Klein, L. C. and Garvey, G. J., in Better Ceramics Through Chem-Istry, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 32, Pittsburgh, PA, 1984).Google Scholar