Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-02T16:21:48.381Z Has data issue: false hasContentIssue false

Preparation of titanium(IV) oxide film on a hard alumite substrate

Published online by Cambridge University Press:  31 January 2011

Yoshie Ishikawa
Affiliation:
Department of Applied Chemistry, Faculty of Engineering, Kumamoto University, Kurokami 2–39–1, Kumamoto 860–8555, Japan
Yasunori Hayashi
Affiliation:
Department of Applied Chemistry, Faculty of Engineering, Kumamoto University, Kurokami 2–39–1, Kumamoto 860–8555, Japan
Yasumichi Matsumoto
Affiliation:
Department of Applied Chemistry, Faculty of Engineering, Kumamoto University, Kurokami 2–39–1, Kumamoto 860–8555, Japan
Get access

Abstract

TiO2 was deposited onto hard alumite (Al/Al2O3/TiO2) by alternating current electrolysis and precipitation in (NH4)2[TiO(C2O4)2] solution at various temperatures, where the hard alumite was prepared by the anodic oxidation of aluminum in sulfuric acid (Al/Al2O3). The TiO2 electrodeposition mainly occurred at temperatures lower than about 50 °C, while the TiO2 deposition due to TiO(C2O4)22− adsorption onto alumina predominantly occurred at temperatures higher than about 50 °C. The amount of deposited TiO2 increased with the increase in the deposition temperature, leading to high photocatalytic activity. The deposited TiO2 at 90 °C followed by heat-treatment at 550 °C had an anatase structure and showed a high photocatalytic activity for the decomposition of acetaldehyde even under fluorescent lamp illumination. The Al/Al2O3/TiO2 prepared at 50 °C was optimal for practical use, because of a relatively high activity and the sufficient adhesion strength between the TiO2 and the Al/Al2O3 substrate due to the presence of the deposited TiO2 in the pores of the alumina film.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fujishima, A. and Honda, K., Nature 37, 238 (1972).Google Scholar
2.Jaeger, C.D. and Bar, A.J., J. Phys. Chem. 83, 3146 (1979).CrossRefGoogle Scholar
3.Damme, H.V. and Hall, W.K., J. Am. Chem. Soc. 101, 4373 (1979).CrossRefGoogle Scholar
4.Sato, S. and White, J.M., Chem. Phys. Lett. 72, 83 (1980).CrossRefGoogle Scholar
5.Rao, M.V., Rejeswar, K., Vernecker, V.R.D. and DuBow, J., J. Phys. Chem. 84, 1987 (1980).CrossRefGoogle Scholar
6.Sato, S. and White, J.M., J. Phys. Chem. 85, 592 (1981).CrossRefGoogle Scholar
7.Frank, S.N. and Bard, A.J., J. Am. Chem. Soc. 99, 303 (1977).CrossRefGoogle Scholar
8.Inoue, T., Fujishima, A., Kornishi, S., and Honda, K., Nature 277, 637 (1979).CrossRefGoogle Scholar
9.Kraeutler, B. and Bard, A.J., J. Am. Chem. Soc. 100, 2239 (1978).CrossRefGoogle Scholar
10.Yoneyama, H., Takao, Y., Tamura, H., and Bard, A.J., J. Phys. Chem. 87, 1417 (1983).CrossRefGoogle Scholar
11.Wong, J.C.S., Linsebigler, A., Lu, G., Fan, J., and Yates, J.T. Jr., J. Phys. Chem. 99, 335 (1995).CrossRefGoogle Scholar
12.Goren, Z., Willner, I., Nelson, A.J., and Frank, A.J., J. Phys. Chem. 94, 3784 (1990).CrossRefGoogle Scholar
13.Aritani, H., Akasaka, N., Tanaka, T., Funabiki, T., Yoshida, S., Gotoh, H., and Okamoto, Y., J. Chem. Soc., Faraday Trans. 92, 2625 (1996).CrossRefGoogle Scholar
14.Sopyan, I., Watanabe, M., Murasawa, S., Hashimoto, K., and Fujishima, A.. J. Photochem. Photobiol. A 98, 79 (1996).CrossRefGoogle Scholar
15.Nozik, A.J. and Memming, R., J. Phys. Chem. 100, 13061 (1996).CrossRefGoogle Scholar
16.Anderson, C. and Bard, A.J., J. Phys. Chem. 99, 9882 (1995).CrossRefGoogle Scholar
17.Yamashita, H., Ichihashi, Y., Harada, M., Stewart, G., Fox, M.A., and Anpo, M., J. Catal. 158, 97 (1996).CrossRefGoogle Scholar
18.Negishi, N., Iyada, T., Hashimoto, K., and Fujishima, A., Chem. Lett. 841 (1995).Google Scholar
19.Hashimoto, K. and Fujishima, A., TiO2 Photocatalysis (CMC, Tokyo, Japan, 1998), pp. 94, 119.Google Scholar
20.Dagan, G. and Tomikiewicz, M., J. Phys. Chem. 97, 12651 (1993).CrossRefGoogle Scholar
21.Sclafani, A., Palmisano, L., and Schiavello, M., J. Phys. Chem. 94, 829 (1990).CrossRefGoogle Scholar
22.Ohtani, B., Bowman, R.M. Jr., Colombo, G.P., Kominami, H., Noguchi, H., and Uosaki, K., Chem. Lett. 579 (1998).Google Scholar
23.Jackson, N.B., Wang, C.M., Luo, Z., Schwitzgebel, J., Ekerdt, J.G., Brock, J.R., and Heller, A., J. Electrochem. Soc. 138, 3660 (1991).CrossRefGoogle Scholar
24.Matsubara, H., Takada, M., Koyama, S., Hashimoto, K., and Fujishima, A., Chem. Lett. 767 (1995).Google Scholar
25.Deki, S., Aoi, Y., Hiroi, O., and Kajinamim, A., Chem. Lett. 433 (1996).Google Scholar
26.Miyoshi, H., Nippa, S., Uchida, H., Mori, H., and Yoneyama, H., Bull. Chem. Soc. Jpn. 63, 3380 (1990).CrossRefGoogle Scholar
27.Ikeda, K., Sakai, H., Baba, R., Hashimoto, K., and Fujishima, A., J. Phys. Chem. B 101, 2617 (1997).CrossRefGoogle Scholar
28.Kavan, L., O’Regan, B., Kay, A., and Gra¨tzel, M., J. Electroanal. Chem. 346, 291 (1993).CrossRefGoogle Scholar
29.Ohtani, B., Ogawa, Y., and Nishimoto, S., J. Phys. Chem. B 101, 3746 (1997).CrossRefGoogle Scholar
30.Mita, I., Kuroda, K., Suzuki, K., Muramatsu, Y., Nemoto, S., and Yamada, M., in Handbook of Aluminum Surface Treatment (Light Metal Publishing, Tokyo, Japan, 1980), pp. 987, 1200.Google Scholar
31.Sato, T., Trans. Inst. Met. Finish. 60, 25 (1982).CrossRefGoogle Scholar
32.Li, A.P., Mu¨ller, F., Birner, A., Nielsch, K., and Go¨sele, U., J. Appl. Phys. 84, 6023 (1998).CrossRefGoogle Scholar
33.Masuda, H., Hasegawa, F., and Ono, S., J. Electrochem. Soc. 144, 127 (1997).CrossRefGoogle Scholar
34.Sato, T. and Sakai, S., Trans. Inst. Met. Finish. 57, 43 (1979).CrossRefGoogle Scholar
35.Matsumoto, Y., Ishikawa, Y., Nishida, M., and Ii, S., J. Phys. Chem. B 104, 4204 (2000).CrossRefGoogle Scholar
36.Ishikawa, Y. and Matsumoto, Y., Electrochim. Acta 46, 2819 (2001).CrossRefGoogle Scholar
37.Xiong, G., Feng, Z., Li, J., Yang, Q., Ying, P., Xin, Q., and Li, C., J. Phys. Chem. B 104, 3581 (2000).CrossRefGoogle Scholar
38.Alosio, M.A.C. and Jean, G.E., Appl. Catal. A 167, 203 (1998).Google Scholar
39.Liu, X., Lu, K.K., and Thomas, J.K., J. Chem. Soc., Faraday Trans. 89, 1861 (1993).CrossRefGoogle Scholar
40.Uchida, H., Hirao, S., Torimoto, T., Kuwabata, S., Sakata, T., Mori, H., and Yoneyama, H., Langmuir 11, 3725 (1995).CrossRefGoogle Scholar
41.Domen, K., Sakata, Y., Kudo, A., Maruya, K., and Onishi, T., Bull. Chem. Soc. Jpn. 61, 359 (1988).CrossRefGoogle Scholar