Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T16:14:23.407Z Has data issue: false hasContentIssue false

Processing and characterization of alumina thin films on chemically vapor deposited diamond substrates for producing adherent metallizations

Published online by Cambridge University Press:  31 January 2011

E. S. K. Menon
Affiliation:
Department of Mechanical Engineering, Center for Materials Science and Engineering, Naval Postgraduate School, Monterey, California 93943
I. Dutta
Affiliation:
Department of Mechanical Engineering, Center for Materials Science and Engineering, Naval Postgraduate School, Monterey, California 93943
Get access

Abstract

In order to make the surface of chemically vapor deposited diamond (CVDD) substrates amenable to metallization by both thin and thick film approaches currently utilized in electronic packaging, a thin, adherent, insulating aluminum oxide film was grown on diamond at low temperatures (<675 K). The film was produced by reactive thermal evaporation of Al and O in an oxygen atmosphere, followed by low-temperature annealing in oxygen. A Cr intermediate layer was deposited on diamond prior to the deposition of aluminum oxide in order to enhance adhesion between the oxide and diamond. The chemistry, crystal structure, and microstructure of the film were characterized in detail via scanning and transmission electron microscopy, as well as Auger electron spectroscopy. Particular attention was given to the mechanisms of bonding across the CVDD-Cr and Cr-alumina interfaces, as well as the stability of the surface treatment following metallization by fritted pastes requiring firing at elevated temperatures. The Cr was found to be bonded with CVDD by Cr23C6 formation, while the bonding between the Cr and alumina layers was provided by the formation of a compositionally modulated solid solution with Al2O3-rich and Cr2O3-rich regions.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Pickrell, D. J., Santini, P. J., and Kimock, F. M., Proc. Int. Symp. on Microelectronics, Vol. 2105 (The Microelectronic Society, 1993), p. 405.Google Scholar
2.Iacovangelo, C. D. and Jerabek, E. C., in Proc. Int. Symp. Microelectronics, Dallas, TX (1993), pp. 132137.Google Scholar
3.Iacovangelo, C. D., DiConza, P. J., Jerabek, E. C., and Zarnoch, K. P., in Advanced Metallization for Devices and Circuits– Science, Technology, and Manufacturability, edited by Murarka, S. P., Katz, A., Tu, K. N., and Maex, K. (Mater. Res. Soc. Symp. Proc. 337, Pittsburgh, PA, 1994), pp. 401412.Google Scholar
4.Iacovangelo, C. D., Jerabek, E. C., Wilson, R. H., and Schaefer, P.C., U.S. Patent No. 5,328,715 (1994).Google Scholar
5.Dautremont-Smith, W. C., Feldman, L. C., Kalish, R., Katz, A., Miller, B., and Moriya, N., U.S. Patent No. 5,334,306 (1994).Google Scholar
6.Zarnoch, K. P. and Iacovangelo, C. D., U.S. Patent No. 5,346,719 (1994).Google Scholar
7.Iacovangelo, C. D., Jerabek, E. C., Wilson, R. H., and Schaefer, P.C., U.S. Patent No. 5,382,758.Google Scholar
8.Menon, E. S. K. and Dutta, I., Appl. Phys. Lett. 68, 2951 (1996).CrossRefGoogle Scholar
9.Dutta, I. and Menon, E. S. K., U.S. Patent Application No. NC 77524 (1997).Google Scholar
10.Ritter, E., Kaminski, L. R., and Hohenegger, K., U.S. Patent No. 4,172,156 (1979).Google Scholar
11.Nowicki, R. S., J. Vac. Sci. Technol. 14, 127 (1977).CrossRefGoogle Scholar
12.Bunshah, R. F. and Schramm, R. J., Thin Solid Films 40, 211 (1977).CrossRefGoogle Scholar
13.Salama, C. A. T., J. Electrochem. Soc. 117, 913 (1970).CrossRefGoogle Scholar
14.Bunshah, R. F. and Raghuram, A.C., J. Vac. Sci. Technol. 9, 1385 (1972).CrossRefGoogle Scholar
15.Hoffman, D. and Leibowitz, D., J. Vac. Sci. Technol. 8, 107 (1971).CrossRefGoogle Scholar
16.DaSilva, E.M. and White, P., J. Electrochem. Soc. 109, 12 (1962).CrossRefGoogle Scholar
17.Ferrieux, E. and Pruneaux, B., J. Electrochem. Soc. 116, 1008 (1969).CrossRefGoogle Scholar
18.Kay, E., in Techniques of Metals Research, edited by Nunshah, R.F. (Wiley, New York, 1968), Vol. 1.Google Scholar
19.Holland, L., Vacuum Deposition of Thin Films (Chapman and Hall, London, 1966).Google Scholar
20.Campbell, D.S., Handbook of Thin Film Technology (McGraw Hill, New York, 1970).Google Scholar
21.Lu, H., Cui, Y. D., Qin, J., Bao, C. L., and Shen, D. H., Appl. Surface Sci. 103, 113 (1996).CrossRefGoogle Scholar
22.Perry, S.S., Ager, J.W., Somorjai, G.A., McClelland, R. J., and Drory, M.D., J. Appl. Phys. 74, 7542 (1993).CrossRefGoogle Scholar
23.Peng, X.L. and Clyne, T. W., Thin Solid Films 312 (1–2), 213 (1998).Google Scholar
24.Zhu, W., Yang, P. C., and Glass, J. T., Appl. Phys. Lett. 63, 1640 (1993).CrossRefGoogle Scholar
25.Tzou, Y., Bruley, J., Ernst, F., and Rühle, M., J. Mater. Res. 9, 1566 (1994).CrossRefGoogle Scholar
26.Tachibana, T. and Glass, J. T., Diamond Relat. Mater. 2, 963 (1993).CrossRefGoogle Scholar
27.Iacovangelo, C.D., Thin Solid Films 286, 264 (1996).CrossRefGoogle Scholar
28.Brown, W.D., Naseem, H.A., Malshe, A.P., Glezen, J.H., and Hinshaw, W.D., in Materials Reliability in Microelectronics V, edited by Oates, A.S., Gadepally, K., Rosenberg, R., Filter, W. F., and Gries, A. L. (Mater. Res. Soc. Symp. Proc. 391, Pittsburgh, PA, 1995), p. 59.Google Scholar
29.Moazed, K.L., Ziedler, J. R., and Taylor, M. J., J. Appl. Phys. 68, 2246 (1990).CrossRefGoogle Scholar
30.Meyyappan, I., Malshe, A.P., Naseem, H.A., and Brown, W.D., Thin Solid Films 253, 407 (1994).CrossRefGoogle Scholar
31.Davis, L.E., McDonald, N.C., Palmberg, P. W., Riach, G.E., and Weber, R.E., Handbook of Auger Electron Spectroscopy (Physical Electronics, 1976).Google Scholar
32.Gaskell, D.R., Introduction to Metallurgical Thermodynamics, 2nd ed. (McGraw Hill, New York, 1981).Google Scholar
33.Levin, E.M., Robbins, C.R., and McMurdie, H.F., Phase Diagrams for Ceramists, edited by Reser, M.K. (American Ceramics Society, Westerville, OH, 1964), Fig. 309;Google Scholar
Roth, R., Negas, T., and Cook, L. P., Phase Diagrams for Ceramists, Vol. IV, edited by Smith, G. (American Ceramics Society, Westerville, OH), Fig. 5189.Google Scholar
34.Ahn, C.C. and Krivanek, O. L., EELS Atlas: A reference guide of electron energy loss spectra covering all stable elements, Arizona State University HREM facility/GATAN Inc., 1993.Google Scholar
35.Leapman, R.D., Grunes, L.A., and Fejes, P. L., Phys. Rev. B 26, 614 (1982).CrossRefGoogle Scholar
36.Terranova, M.L., Sessa, V., Bernardini, R., Davoli, I., and De Crescenzi, M., Surf. Sci. 331–333, 1050 (1995).CrossRefGoogle Scholar
37.Practical Surface Analysis, edited by D. Briggs and M.P. Seah, 2nd ed. (John Wiley & Sons, New York, 1990), Vol. 1, p. 102.Google Scholar
38.Danyluk, S., Park, J.Y., and Busch, D. E., Scripta Metall. 13, 857 (1979).CrossRefGoogle Scholar
39.Turkdogan, E.T., Physical Chemistry of High Temperature Technology (Academic Press, New York, 1980), p. 10.Google Scholar
40.Menon, E.S. K. and Dutta, I., unpublished research.Google Scholar
41.Wolter, S.D. and Glass, J. T., J. Appl. Phys. 77, 5119 (1995).CrossRefGoogle Scholar
42.Crumpton, J., Koba, R., Valenta, K., Speck, B., Roach, C., Kuty, D., and Keusseyan, R., MCM Conference 1997.Google Scholar