Published online by Cambridge University Press: 31 January 2011
Modified lead titanate of 0.9PbTiO3 −0.1Pb(Mg0.5 W0.5)O3 thin films have been deposited onto Pt-coated Si substrates by pulsed laser deposition. Films were crystallized in situ during deposition or by post-depositional heat treatment (post-annealing). Compositional and structural characterization showed that the phase formation and microstructure of the films were highly sensitive to deposition conditions. Perovskite single phase films were formed in situ at 650 °C, PO2 = 40 Pa as well as by post-annealing amorphous films at 650 °C. In the post-annealing process, the amorphous as-deposited phase was crystallized to perovskite and/or pyrochlore, and the ratio of perovskite to pyrochlore was found to be influenced by the depositional PO2. Depending on the deposition temperature, the grain structures of the crystallized films were columnar or equiaxed. A relatively homogeneous surface morphology was obtained by deposition at a lower pressure (PO2 = 13 Pa). The in situ crystallized films showed variable crystallographic orientation. The more (111) oriented films had the lowest remanent polarizations and the highest coercive fields. A method for preparing randomly oriented films, via a two-step deposition process with intermediate annealing, is believed to give the most consistent results and the best ferroelectric properties at the present level of development.