Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T05:12:31.588Z Has data issue: false hasContentIssue false

Processing, microstructure and mechanical properties of Al-based metal matrix composites reinforced with mechanically alloyed particles

Published online by Cambridge University Press:  19 April 2016

A.K. Chaubey*
Affiliation:
Institute of Minerals and Materials Technology (IMMT), Bhubaneswar-751013, India
S. Scudino
Affiliation:
IFW Dresden, Institut für Komplexe Materialien, Postfach 270116, D-01171 Dresden, Germany
N.K. Mukhopadhyay
Affiliation:
Department of Metallurgical Engineering, Indian Institute of Technology (BHU), Varanasi-221005, India
J. Eckert
Affiliation:
Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, A-8700 Leoben, Austria; and Department Materials Physics, Montanuniversität Leoben, A-8700 Leoben, Austria
*
a) Address all correspondence to this author. e-mail: anil.immt@gmail.com
Get access

Abstract

Al-based composites reinforced with Mg–7.4%Al mechanically alloyed particles have been synthesized by hot pressing followed by hot extrusion. Microstructural characterization of the bulk samples reveals the phase transformation of the reinforced particles (Mg(Al)ss + γ-Al12Mg17) to the stable intermetallic β-Al3Mg2 phase which occurs during consolidation. The phase transformation leads to the increase of effective volume faction of the reinforcement along with strong interfacial bonding, which causes a significant increase of the strength of the composites retaining appreciable plastic deformation. The strengthening can be attributed to the reduction of ligament size and to the interface strengthening due to better interface bonding (load-transfer) between the Al-matrix and the reinforcing particles.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chaubey, A.K., Scudino, S., Mukhopadhyay, N.K., Samadi Khoshkhoo, M., Mishra, B.K., and Eckert, J.: Effect of particle dispersion on the mechanical behavior of Al-based metal matrix composites reinforced with nanocrystalline Al–Ca intermetallics. J. Alloys Compd. 536, S134 (2012).Google Scholar
Scudino, S., Liu, G., Sakaliyska, M., Surreddi, K.B., and Eckert, J.: Powder metallurgy of Al-based metal matrix composites reinforced with β-Al3Mg2 intermetallic particles: Analysis and modeling of mechanical properties. Acta Mater. 57, 4529 (2009).Google Scholar
Kang, Y.C. and Chan, S.L.: Tensile properties of nanometric Al2O3 particulate reinforced alumina matrix composite. Mater. Chem. Phys. 85, 438 (2004).CrossRefGoogle Scholar
Hsu, C.J., Chang, C.Y., Kao, P.W., Ho, N.J., and Chang, C.P.: Al–Al3Ti nanocomposites produced in situ by friction stir processing. Acta Mater. 54, 5241 (2006).Google Scholar
Tang, F., Han, B.Q., Hagiwara, M., and Schoenung, J.M.: Tensile deformation and fracture in a bulk nanostructured Al-5083/SiCp composite at elevated temperatures. Adv. Eng. Mater. 9, 286 (2007).CrossRefGoogle Scholar
Zhong, X.L., Wong, W.L.E., and Gupta, M.: Enaching strength and duclity of magnesium by integrating in with aluminum nanoparticle. Acta Mater. 55, 6338 (2007).Google Scholar
Ali, F., Scudino, S., Liu, G., Srivastava, V.C., Mukhopadhyay, N.K., Surreddi, K.B., Sakaliyska, M., Samadi Khoshkhoo, M., Uhlenwinkl, V., and Eckert, J.: Mechanical behaviour of quasicrystalline-reinforced Al-based metal matrix composites. J. Alloys Compd. 536, 130 (2012).Google Scholar
Basariya, M.R., Srivastava, V.C., and Mukhopadhyay, N.K.: Microstructural characteristics and mechanical properties of carbon nanotube reinforced aluminum alloy composites produced by ball milling. Mater. Des. 64, 542 (2014).Google Scholar
Basariya, M.R., Srivastava, V.C., and Mukhopadhyay, N.K.: Effect of milling time on structural evolution and mechanical properties of garnet reinforced EN AW6082 composites. Metall. Mater. Trans. A 36, 1360 (2015).Google Scholar
Liua, Y.Q., Conga, H.T., Wanga, W., Sun, C.H., and Cheng, H.M.: AlN nanoparticle-reinforced nanocrystalline Al matrix composites: Fabrication and mechanical properties. Mater. Sci. Eng., A 505, 151 (2009).CrossRefGoogle Scholar
Wang, H.Y., Jiang, Q.C., Wang, Y., Ma, B.X., and Zhao, F.: Fabrication of TiB2 particulate reinforced magnesium matrix composites by powder metallurgy. Mater. Lett. 58, 3509 (2004).Google Scholar
Kanga, Y.C. and Lap-Ip Chan, S.: Tensile properties of nanometric Al2O3 particulate-reinforced aluminum matrix composites. Mater. Chem. Phys. 85, 438 (2004).Google Scholar
Schurack, F., Eckert, J., and Schultz, L.: Synthesis and mechanical properties of high strength composites. Phil. Mag. 83, 1287 (2003).Google Scholar
EI Kabir, T., Joulain, A., Gauthier, V., Dubois, S., Bonneville, J., and Bertheau, D.: Hot isostatic pressing synthesis and mechanical properties of Al/Al–Cu–Fe composite materials. J. Mater. Res. 23, 904 (2008).Google Scholar
Inoue, A.: Amorphous: Nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog. Mater. Sci. 43, 365 (1998).Google Scholar
Inoue, A. and Kimura, H.: Fabrications and mechanical properties of bulk nanoquasicrystalline alloys in Al-based system. J. Light Met. 1, 31 (2001).Google Scholar
Chaira, D., Sangal, S., and Mishra, B.K.: Synthesis of aluminium–cementite metal matrix composite by mechanical alloying. Mater. Manuf. Processes 22, 492 (2007).Google Scholar
Prashanth, K.G., Kumar, S., Scudino, S., Murty, B.S., and Eckert, J.: Fabrication and response of Al70Y16Ni10Co4 glass reinforced metal matrix composites. Mater. Manuf. Processes 26, 1242 (2011).Google Scholar
Moazami-Goudarzi, M.D. and Akhlaghi, F.: Effect of SiC nanoparticles content and Mg addition on the characteristics of Al/SiC composite powders produced via in situ powder metallurgy (IPM) method. Part. Sci. Technol. 31, 234 (2014).Google Scholar
Gleiter, H.: Nanocrystalline materials. Prog. Mater. Sci. 33, 223315 (1989).Google Scholar
Witkin, D.B. and Lavernia, E.J.. Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog. Mater. Sci. 51, 160 (2006).Google Scholar
Liua, Y.Q., Cong, H.T., Wang, W., Sun, C.H., and Cheng, H.M.: AlN nanoparticle-reinforced nanocrystalline Al matrix composites: Fabrication and mechanical properties. Mater. Sci. Eng., A 505, 151 (2009).Google Scholar
Kainer, K.U.: Metal Matrix Composites. Custom-made Materials for Automotive and Aerospace Engineering (J. WILEY-VCH, Weinheim, 2006).Google Scholar
Tan, M.J. and Zhang, X.: Powder metal-matrix composites: Selection and processing. Mater. Sci. Eng., A 244, 80 (1998).Google Scholar
Ozdemir, I., Ahrensb, S., Mücklich, S., and Wielageb, B.: Nanocrystalline Al–Al2O3p and SiCp composites produced by high-energy ball milling. J. Mater. Process. Technol. 205, 111 (2008).Google Scholar
Lu, L., Lai, M.O., and Zhang, S.: Preparation of Al-based composite using mechanical alloying. Key Eng. Mater. 111–124, 104 (1995).Google Scholar
Chaubey, A.K., Scudino, S., Samadi Khoshkhoo, M., Prashanth, K.G., Mukhopadhyay, N.K., Mishra, B.K., and Eckert, J.: Synthesis and characterization of nanocrystalline Mg93.3Al6.7 powders produced by mechanical alloying. Metals 3, 58 (2013).Google Scholar
ASTM E9-89a: Standard Test Methods for Compression Testing of Metallic Materials at Room Temperature (ASTM International, West Conshohocken, 2000).Google Scholar
Bauer, E., Kaldarar, H., Lackner, R., Michor, H., Steiner, W., Scheidt, E-W., Galatanu, A., Marabelli, F., Wazumi, T., Kumagai, K., and Feuerbacher, M.: Superconductivity in the complex metallic alloy β-Al3Mg2 . Phys. Rev. B: Condens. Matter Mater. Phys. 76, 1 (2007).CrossRefGoogle Scholar
Saha, R., Morris, E., and Chawla, N.: Hybrid and conventional particle reinforced metal matrix composites by squeeze infiltration casting. J. Mater. Sci. Lett. 21, 337 (2002).CrossRefGoogle Scholar
StJohn, D.H., Dahle, A.K., Abbott, T., Nave, M.D., and Qian, M.: Solidification of Cast Magnesium Alloys (Magnesium Tech, Warrendale, 2003); pp. 95100.Google Scholar
Biner, S.B.: The role of interfaces and matrix void nucleation mechanism on the ductile fracture process of discontinuous fibre-reinforced composites. J. Mater. Sci. 29 2893 (1994).Google Scholar
Mcdanels, D.L.: Analysis of stress-strain, fracture and ductility behaviour of aluminum matrix composite containing discontinuous silicon carbide reinforcement. Metall. Trans. A 16, 1105 (1985).Google Scholar
Hall, E.O.: The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. B 64, 747 (1951).Google Scholar
Handwerker, C.A., Cahn, J.W., and Manning, J.R.: Thermodynamics and kinetics of reactions at interfaces in composites. Mater. Sci. Eng., A 126, 173 (1990).Google Scholar
Mingyi, Z., Kun, W., Hancen, L., Kamado, S., and Kojima, Y.: Microstructure and mechanical properties of aluminum borate whisker-reinforced magnesium matrix composites. Mater. Lett. 57, 558 (2002).Google Scholar
Atabaki, M.M. and Idris, J.: Low-temperature partial transient liquid phase diffusion bonding of Al/Mg2Si metal matrix composite to AZ91D using Al-based inter layer. Mater. Des. 34, 832 (2011).CrossRefGoogle Scholar
Zhang, X.P., Tan, M.J., Yang, T.H., Xu, X.J., and Wang, J.T.: Bonding strength of Al/Mg/Al alloy tri-metallic laminates fabricated by hot rolling. Bull. Mater. Sci. 34, 805 (2011).Google Scholar
ASTM Annual Book: Standard Terminology Relating to Methods of Mechanical Testing (ASTME6-03 2003, West Conshohocken, PA, USA, 2000).Google Scholar
Lloyd, D.J.: Particle reinforced aluminium and magnesium matrix composites. Int. Mater. Rev. 39, 1 (1994).Google Scholar
Piggot, M.R.: Load-Bearing Fiber Composites: International Series on the Strength and Fracture of Materials and Structures (Pergamon press, Oxford, 1980).Google Scholar
Nardone, V.C. and Prewo, K.M.: On the strength of discontinuous silicon carbide reinforced aluminum composites. Scr. Metall. 20, 43 (1986).Google Scholar
Scudino, S., Ali, F., Surreddi, K.B., Prashanth, K.G., Sakaliyska, M., and Eckert, J.: Al-based metal matrix composites reinforced with nanocrystalline Al–Ti–Ni particles. J. Phys.: Conf. Ser. 240, 1 (2010).Google Scholar
Ramkrishnan, N.: An analytical study on strengthening of particulate reinforced metal matrix composites. Acta Mater. 44, 69 (1996).Google Scholar
Shi, N., Wilner, B., and Arsenault, R.J.: An FEM study of the plastic deformation process of whisker reinforced SiC/Al composites. Acta Metall. Mater. 40, 2841 (1992).Google Scholar
Kim, J.Y., Scudino, S., Kim, B.S., Lee, M.H., Kühn, U., and Eckert, J.: Production and characterization of brass-matrix composites reinforced with Ni59Zr20Ti16Si2Sn3 glassy particles. Metals 2, 79 (2012).Google Scholar
Clyne, T.W. and Withers, P.J.: An Introduction to Metal Matrix Composites (Cambridge Press University, New York, NY, USA, 1995).Google Scholar
Hirth, J.P. and Lothe, J.: Theory of Dislocations, 2nd ed. (Wiley, New York, 1982).Google Scholar