Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T01:03:43.508Z Has data issue: false hasContentIssue false

Processing of poly(hydroxybutyrate-co-hydroxyvalerate)-based bionanocomposite foams using supercritical fluids

Published online by Cambridge University Press:  22 March 2012

Alireza Javadi
Affiliation:
Department of Biomedical Engineering; and Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, Wisconsin 53715
Yottha Srithep
Affiliation:
Department of Mechanical Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53715
Craig C. Clemons
Affiliation:
Forest Products Laboratory, United States Department of Agriculture, Madison, Wisconsin 53715
L-S. Turng*
Affiliation:
Department of Mechanical Engineering; and Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, Wisconsin 53715
Shaoqin Gong*
Affiliation:
Department of Biomedical Engineering; and Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, Wisconsin 53715
*
a)Address all correspondence to these authors. e-mail: turng@engr.wisc.edu
Get access

Abstract

Supercritical fluid (SCF) N2 was used as a physical foaming agent to fabricate microcellular injection-molded poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV)–poly(butylene adipate-co-terephthalate) (PBAT)–hyperbranched-polymer (HBP)–nanoclay (NC) bionanocomposites. The effects of incorporating HBP and NC on the morphological, mechanical, and thermal properties of both solid and microcellular PHBV–PBAT blends were studied. NC exhibited intercalated structures in solid components, but showed a mixture of exfoliated and intercalated structures in the corresponding microcellular nanocomposites. The addition of NC improved the thermal stability of the resulting nanocomposites. The addition of HBP and NC reduced the cell size and increased the cell density of microcellular components. The addition of HBP and NC enhanced the degree of crystallinity for both solid and microcellular components. Moreover, with the addition of HBP, the area under tan δ curve, specific fracture toughness, and strain-at-break of the PHBV-based nanocomposite increased significantly whereas the storage modulus, specific Young’s modulus, and specific tensile strength decreased.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gong, S., Turng, L.S., Park, C., and Liao, L.: Microcellular polymer nanocomposites for packaging and other applications, in Packaging Nanotechnology, edited by Mohanty, M.M.A.K., Nalwa, H.S. (American Scientific Publishers, Valencia, CA, 2008).Google Scholar
2.Xu, J. and Pierick, D.: Microcellular foam processing in reciprocating screw injection molding machines. J. Injection Molding Technol. 5, 152 (2001).Google Scholar
3.Xu, J.: Microcellular Injection Molding (John Wiley & Sons, Hoboken, NJ, 2010); p. 618.Google Scholar
4.Gong, S., Yuan, M., Chandra, A., Winardi, A., Osorio, A., and Turng, L.S.: Microcellular injection molding. Int. Polym. Proc. 2, 202 (2005).Google Scholar
5.Kramschuster, A., Pilla, S., Gong, S., Chandra, A. and Turng, L.S.: Injection molded solid and microcellular polylactide compounded with recycled paper shopping bag fibers. Int. Polym. Proc. 22, 436 (2007).CrossRefGoogle Scholar
6.Javadi, A., Kramschuster, A.J., Pilla, S., Lee, J., Gong, S., and Turng, L.S.: Processing and characterization of microcellular PHBV/PBAT blends. Polym. Eng. Sci. 50, 1440 (2010).CrossRefGoogle Scholar
7.Mohanty, A.K., Misra, M., and Drzal, L.T.: Sustainable biocomposites from renewable resources: Opportunities and challenges in the green materials world. J. Polym. Environ. 10, 19 (2002).CrossRefGoogle Scholar
8.Sudesh, K., Abe, H., and Doi, Y.: Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters. Prog. Polym. Sci. 25, 1503 (2000).Google Scholar
9.Barkoula, N.M., Garkhail, S.K., and Peijs, T.: Biodegradable composites based on flax/polyhydroxybutyrate and its copolymer with hydroxyvalerate. Ind. Crops Prod. 31, 34 (2010).CrossRefGoogle Scholar
10.Adamus, G.: Aliphatic polyesters for advanced technologies structural characterization of biopolyesters with the aid of mass spectrometry. Macromol. Symp. 239, 77 (2006).Google Scholar
11.Gursel, I., Balcik, C., Arica, Y., Akkus, O., Akkas, N., and Hasirci, V.: Synthesis and mechanical properties of interpenetrating networks of polyhydroxybutyrate-co-hydroxyvalerate and polyhydroxyethyl methacrylate. Biomaterials 19, 1137 (1998).Google Scholar
12.Zhang, J.F. and Sun, X.Z.: Mechanical properties and crystallization behavior of poly(lactic acid) blended with dendritic hyperbranched polymer. Polym. Int. 53, 716 (2004).CrossRefGoogle Scholar
13.Bhardwaj, R. and Mohanty, A.K.: Modification of brittle polylactide by novel hyperbranched polymer-based nanostructures. Biomacromolecules 8, 2476 (2007).Google Scholar
14.Gao, C. and Yan, D.: Hyperbranched polymers: From synthesis to applications. Prog. Polym. Sci. 29, 183 (2004).Google Scholar
15.Pilla, S., Kramschuster, A., Lee, J., Clemons, C., Gong, S.Q., and Turng, L.S.: Microcellular processing of polylactide-hyperbranched polyester-nanoclay composites. J. Mater. Sci. 45, 2732 (2010).Google Scholar
16.Choi, W.M., Kim, T.W., Park, O.O., Chang, Y.K., and Lee, J.W.: Preparation and characterization of poly(hydroxybutyrate-co-hydroxyvalerate)-organoclay nanocomposites. J. Appl. Polym. Sci. 90, 525 (2003).CrossRefGoogle Scholar
17.Wang, S., Song, C., Chen, G., Guo, T., Liu, J., Zhang, B., and Takeuchi, S.: Characteristics and biodegradation properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/organophilic montmorillonite (PHBV/OMMT) nanocomposite. Polym. Degrad. Stab. 87, 69 (2005).CrossRefGoogle Scholar
18.Chen, G.X., Hao, G.J., Guo, T.Y., Song, M.D., and Zhang, B.H.: Crystallization kinetics of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/clay nanocomposites. J. Appl. Polym. Sci. 93, 655 (2004).Google Scholar
19.Javadi, A., Srithep, Y., Lee, J., Pilla, S., Clemons, C., Gong, S., and Turng, L.S.: Processing and characterization of solid and microcellular PHBV/PBAT blend and its RWF/nanoclay composites. Composites Part A 41, 982 (2010).Google Scholar
20.Javadi, A., Srithep, Y., Pilla, S., Lee, J., Gong, S., and Turng, L.S.: Processing and characterization of solid and microcellular PHBV/coir fiber composites. Mater. Sci. Eng., C 30, 749 (2010).CrossRefGoogle Scholar
21.Addonizio, M.L., Martuscelli, E., and Silvestre, C.: Study of the nonisothermal crystallization of poly(ethylene oxide) poly(methyl methacrylate) blends. Polymer 28, 183 (1987).Google Scholar
22.Naguib, H.E., Park, C.B., Panzer, U., and Reichelt, N.: Strategies for achieving ultra low-density polypropylene foams. Polym. Eng. Sci. 42, 1481 (2002).Google Scholar
23.Lim, S.T., Hyun, Y.H., Lee, C.H., and Choi, H.J.: Preparation and characterization of microbial biodegradable poly(3-hydroxybutyrate)/organoclay nanocomposite. J. Mater. Sci. Lett. 22, 299 (2003).Google Scholar
24.Li, T.N., Turng, L.S., Gong, S.Q., and Erlacher, K.: Polylactide, nanoclay, and core-shell rubber composites. Polym. Eng. Sci. 46, 1419 (2006).Google Scholar
25.Li, X.C., Park, H.M., Lee, J.O., and Ha, C.S.: Effect of blending sequence on the microstructure and properties of PBT/EVA-g-MAH/organoclay ternary nanocomposites. Polym. Eng. Sci. 42, 2156 (2002).Google Scholar
26.Miao, L.Q., Qiu, Z.B., Yang, W.T., and Ikehara, T.: Fully biodegradable poly(3-hydroxybutyrate-co-hydroxyvalerate)/poly(ethylene succinate) blends: Phase behavior, crystallization and mechanical properties. React. Funct. Polym. 68, 446 (2008).Google Scholar
27.Chen, H., Wang, M., Lin, Y., Chan, C.M., and Wu, J.: Morphology and mechanical property of binary and ternary polypropylene nanocomposites with nanoclay and CaCo3 particles. J. Appl. Polym. Sci. 106, 3409 (2007).CrossRefGoogle Scholar
28.McClurg, R.B.: Design criteria for ideal foam nucleating agents. Chem. Eng. Sci. 59, 5779 (2004).CrossRefGoogle Scholar
29.Lee, L.J., Zeng, C.C., Cao, X., Han, X.M., Shen, J., and Xu, G.J.: Polymer nanocomposite foams. Compos. Sci. Technol. 65, 2344 (2005).CrossRefGoogle Scholar
30.Bruzaud, S. and Bourmaud, A.: Thermal degradation and (nano)mechanical behavior of layered silicate reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. Polym. Test. 26, 652 (2007).Google Scholar
31.Mohanty, S. and Nayak, S.K.: Aromatic-aliphatic poly(butylene adipate-co-terephthalate) bionanocomposite: Influence of organic modification on structure and properties. Polym. Compos. 31, 1194 (2010).Google Scholar
32.Sinha Ray, S., Okamoto, K., Yamada, K., and Okamoto, M.: Novel porous ceramic material via burning of polylactide/layered silicate nanocomposite. Nano Lett. 2, 423 (2002).Google Scholar
33.Liu, W.J., Yang, H.L., Wang, Z., Dong, L.S., and Liu, J.J.: Effect of nucleating agents on the crystallization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). J. Appl. Polym. Sci. 86, 2145 (2002).CrossRefGoogle Scholar
34.Gunaratne, L.M.W.K. and Shanks, R.A.: Multiple melting behavior of poly(3-hydroxybutyrate-co-hydroxyvalerate) using step-scan DSC. Eur. Polym. J. 41, 2980 (2005).Google Scholar
35.Qian, J., Zhu, L.Y., Zhang, J.W., and Whitehouse, R.S.: Comparison of different nucleating agents on crystallization of poly(3-hydroxybutyrate-co-3-hydroxyvalerates). J. Polym. Sci. Part B: Polym. Phys. 45, 1564 (2007).Google Scholar
36.Ma, P.M., Wang, R.Y., Wang, S.F., Zhang, Y., Zhang, Y.X., and Hristova, D.: Effects of fumed silica on the crystallization behavior and thermal properties of poly(hydroxybutyrate-co-hydroxyvalerate). J. Appl. Polym. Sci. 108, 1770 (2008).CrossRefGoogle Scholar
37.Masirek, R., Kulinski, Z., Chionna, D., Piorkowska, E., and Pracella, M.: Composites of poly(L-lactide) with hemp fibers: Morphology and thermal and mechanical properties. J. Appl. Polym. Sci. 105, 255 (2007).CrossRefGoogle Scholar
38.Pracella, M., Chionna, D., Anguillesi, I., Kulinski, Z., and Piorkowska, E.: Functionalization, compatibilization and properties of polypropylene composites with Hemp fibers. Compos. Sci. Technol. 66, 2218 (2006).Google Scholar
39.Bordes, P., Pollet, E., and Averous, L.: Nanobiocomposites: Biodegradable polyester/nanoclay systems. Prog. Polym. Sci. 34, 125 (2009).Google Scholar
40.Pothan, L.A., Oommen, Z., and Thomas, S.: Dynamic mechanical analysis of banana fiber reinforced polyester composites. Compos. Sci. Technol. 63, 283 (2003).Google Scholar
41.Lin, Y., Zhang, K.Y., Dong, Z.M., Dong, L.S., and Li, Y.S.: Study of hydrogen-bonded blend of polylactide with biodegradable hyperbranched poly(ester amide). Macromolecules 40, 6257 (2007).CrossRefGoogle Scholar
42.Argon, A.S., Cohen, R.E., Gebizlioglu, O.S., Brown, H.R., and Kramer, E.J.: A new mechanism of toughening glassy-polymers. 2. Theoretical approach. Macromolecules 23, 3975 (1990).CrossRefGoogle Scholar
43.Gebizlioglu, O.S., Beckham, H.W., Argon, A.S., Cohen, R.E., and Brown, H.R.: A new mechanism of toughening glassy-polymers. 1. Experimental procedures. Macromolecules 23, 3968 (1990).Google Scholar
44.Wong, S., Shanks, R.A., and Hodzic, H.: Mechanical behavior and fracture toughness of poly(L-lactic acid)-natural fiber composites modified with hyperbranched polymers. Macromol. Mater. Eng. 289, 447 (2004).Google Scholar
45.Kramschuster, A., Gong, S., Turng, L.S., Li, T., and Li, T.: Injection-molded solid and microcellular polylactide and polylactide nanocomposites. J. Biobased Mater. Bioenergy 1, 37 (2007).CrossRefGoogle Scholar