Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-02T20:26:24.387Z Has data issue: false hasContentIssue false

Properties and microstructure of tungsten films deposited by ion-assisted evaporation

Published online by Cambridge University Press:  31 January 2011

R.A. Roy
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598
R. Petkie
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598
A. Boulding
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598
Get access

Abstract

The modification of film properties in evaporated tungsten was studied as a function of deposition environment. Using concurrent argon ion bombardment of the growing film, the stress varied in the same manner at all ion energies and substrate temperatures. Initial increases in tensile stress are followed by a monotonic trend toward compressive stress, for all sets of films. On the other hand, the qualitative changes in film resistivity with concurrent bombardment were dependent on the ion energy and substrate temperature, showing increases at high temperature and energy and decreases at low temperature and energy. Changes in the microstructure and impurity content in deposited films were found to be strongly linked to stress and resistivity changes. The trend toward compressive stress induced by high levels of ion bombardment is primarily reflected in an increase in (110) orientation. Increased resistivity is related to decreased grain size, increased (110) texture, and increased levels of film argon and oxygen content. By choice of deposition conditions, both the resistivity and stress can be minimized.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Hoffman, D. W. and Thornton, J. A., J. Vac. Sci. Technol. 20 (3), 35 (1982).Google Scholar
2Hoffman, D. W. and Gaerttner, M. R., J. Vac. Sci. Technol. 17 (1), 425 (1980).CrossRefGoogle Scholar
3Berg, R. S. and Kominiak, G. J., J. Vac. Sci. Technol. 13 (1), 403 (1976).CrossRefGoogle Scholar
4Harper, J. M. E., Cuomo, J. J., Gambino, R. J., and Kaufman, H. R., in Ion Bombardment Modification of Surfaces: Fundamentals and Applications, edited by Auciello, O. and Kelley, R. (Elsevier Science Pub. B. V., Amsterdam, 1984).Google Scholar
5Cuomo, J. J., Harper, J. M. E., Guarnieri, C. R., Yee, D. S., Attanasio, L. J., Angilello, J., Wu, C. T., and Hammond, R. H., J. Vac. Sci. Technol. 20 (3), 349 (1982).CrossRefGoogle Scholar
6Yee, D. S., Floro, J., Mikalsen, D. J., Cuomo, J. J., Ahn, K. Y., and Smith, D. A., J. Vac. Sci. Technol. A 3 (6), 2121 (1985).CrossRefGoogle Scholar
7Roy, R. A., Petkie, R., Yee, D. S., Karasinski, J., and Boulding, A., in Processing and Characterization of Materials Using Ion Beams, edited by Rehn, L. E., Greene, J., and Smidt, F. A. (Mater. Res. Soc. Symp. Proc. 128, Pittsburgh, PA, 1989), p. 17.Google Scholar
8Segmiiller, A., Angilello, J., and LaPlaca, S. J., J. Appl. Phys. 15, 6224 (1980).CrossRefGoogle Scholar
9Kao, A. S., Hwang, C., Novotny, V. J., Deline, V. R., and Gorman, G. L., J. Vac. Sci. Technol. A7 (5), 2966 (1989).CrossRefGoogle Scholar
10Ziemann, P. and Kay, E., J. Vac. Sci. Technol. A1 (2), 512 (1983).CrossRefGoogle Scholar
11Huang, T. C., Lim, G., Parmigiani, F., and Kay, E., J. Vac. Sci. Technol. A3 (6), 2161 (1985).CrossRefGoogle Scholar
12Kay, E., Parmigiani, F., and Parrish, W., J. Vac. Sci. Technol. A5, 44 (1987).CrossRefGoogle Scholar
13Parmigiani, F., Kay, E., Huang, T. C., Perrin, J., Jurich, M., and Swalen, J. D., Phys. Rev. B 33 (2), 879 (1986).CrossRefGoogle Scholar
14Roy, R. A., Cuomo, J. J., and Yee, D. S., J. Vac. Sci. Technol. A6 (3), 1621 (1988).CrossRefGoogle Scholar
15Roy, R. A. and Yee, D. S., in Handbook of Ion Beam Technology, edited by Cuomo, J. J., Rossnagel, S. M., and Kaufman, H. R. (Noyes Publications, Park Ridge, NJ, 1989), p. 194.Google Scholar
16 See Cullity, B. D., in Elements of X-ray Diffraction (Addison-Wesley Publishing Co., Reading, MA, 1978), Chap. 7.Google Scholar
17Window, B., Sharpies, F., and Savvides, N., J. Vac. Sci. Technol. A6 (4), 2333 (1988).CrossRefGoogle Scholar
18Window, B., J. Vac. Sci. Technol. A7 (5), 3036 (1989).CrossRefGoogle Scholar
19Rajan, K., Ramanathan, K. V., Roy, R. A., Petkie, R., and Cuomo, J. J. (unpublished results).Google Scholar
20Rajan, K., Roy, R. A., Petkie, R., and Ramanathan, K. V., in Beam-Solid Interactions: Physical Phenomena, edited by Knapp, J. A., Borgesen, P., and Zuhr, R. A. (Mater. Res. Soc. Symp. Proc. 157, Pittsburgh, PA, 1990).Google Scholar
21Hosford, W. F., Trans. TMS 230, 12 (1964).Google Scholar
22Chin, G. Y. and Mammel, W. L., Trans. TMS 245, 383 (1969).Google Scholar
23Stambouli, V., Burat, O., Bouchier, D., Meyer, F., Gilles, J-P., and Gautherin, G., Intl. Conf. Thin Films Proc, Thin Sol. Films (in press).Google Scholar
24Shih, K. K., Smith, D., and Crowe, J. R., J. Vac. Sci. Technol. A6 (3), 1681 (1988).CrossRefGoogle Scholar
25Meyer, F., Schwebel, C., Pellet, C., and Gautherin, G., Appl. Surf. Sci. 36, 231 (1989).CrossRefGoogle Scholar