Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-02T18:48:49.919Z Has data issue: false hasContentIssue false

Pt/Ti/SiO2/Si substrates

Published online by Cambridge University Press:  03 March 2011

G.R. Fox*
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
S. Trolier-McKinstry
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
S.B. Krupanidhi
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
L.M. Casas
Affiliation:
Army Research Laboratory, Electronic and Power Sources Directorate, AMSRL-EP-EC-M. Fort Monmouth, New Jersey 07703-5601
*
a)Present address: Laboratoire de Céramique, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, CH-1015.
Get access

Abstract

Pt/Ti/SiO2/Si structures have been studied to investigate the structural, chemical, and microstructural changes that occur during annealing. Grain growth of the as-deposited Pt columns was observed after annealing at 650 °C, and extensive changes in the Pt microstructure were apparent following a 750 °C anneal for 20 min. In addition, two types of defects were identified on the surfaces of annealed substrates. Defect formation was retarded when the surface was covered with a ferroelectric film. Concurrent with the annealing-induced Pt microstructure changes, Ti from the adhesion layer between the Pt and the SiO2 migrated into the Pt layer and oxidized. It was shown with spectroscopic ellipsometry and Auger electron spectroscopy that for long annealing times, the titanium oxide layer can reach the Pt surface. Consequently, at the processing temperatures utilized in preparing many ferroelectric thin films, the substrate is not completely inert or immobile. The changes associated with Ti migration could be especially problematic in techniques that require the substrate to be heated prior to film deposition.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Roth, R. S., and Cook, L. P., Phase Diagrams for Ceramists (The American Society, Westerville, OH, 1981), Vol. IV.Google Scholar
2Dey, S. K. and Zuleeg, R., Ferroelectrics 108, 37 (1990).CrossRefGoogle Scholar
3Madsen, L. D. and Weaver, L., J. Electron. Mater. 21(1), 93 (1992).CrossRefGoogle Scholar
4Roy, R. A. and Etzold, K. F., J. Mater. Res. 7, 1455 (1992).CrossRefGoogle Scholar
5Pretorius, R. and Botha, A. P., Thin Solid Films 79, 61 (1981).CrossRefGoogle Scholar
6Hung, L. S. and Mayer, J. W., J. Appl. Phys. 60(3), 1002 (1986).CrossRefGoogle Scholar
7Fox, G. and Krupanidhi, S. B., unpublished work.Google Scholar
8Olowolafe, J. O., Jones, R. E., Campbell, A. C., Maniar, P. D., Hedge, R. I., and Mogab, C. J., in Ferroelectric Thin Films II, edited by. Kingon, A. I., Myers, E. R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 355.Google Scholar
9Bruchhaus, R., Pitzer, D., Eibl, O., Scheithaurer, U., and Hoesler, W., in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 123.Google Scholar
10Kondo, I., Yoneyama, T., Takenaka, O., and Kinbara, A., J. Vac. Sci. Technol. A, 10(6), 3456 (1992).CrossRefGoogle Scholar
11Sreenivas, K., Reaney, I., Maeder, T., Setter, N., Jagadish, C., and Elliman, R. G., J. Appl. Phys. 75(1), (1994).CrossRefGoogle Scholar
12Trolier-McKinstry, S., Hu, H., Krupanidhi, S., Chindaudom, P., Vedam, K., and Newnham, R. E., Thin Solid Films 230, 15 (1993).CrossRefGoogle Scholar
13Aspnes, D. E. and Theeten, J. B., Phys. Rev. Lett. 43, 1046 (1979).CrossRefGoogle Scholar
14Fox, G. R., Krupanidhi, S. B., More, K. L., and Allard, L. F., J. Mater. Res. 7, 3039 (1992); Krupanidhi, S. B., Hu, H., and Kumar, V., J. Appl. Phys. 21, 376 (1992); Chen, J., Udayakumar, K. R., Brooks, K. G., and Cross, L. E., J. Appl. Phys. 71, 4465 (1992).CrossRefGoogle Scholar
15Thornton, J. A., Annu. Rev. Mater. Sci. 7, 239 (1977).CrossRefGoogle Scholar
16Levin, E. M., Robbins, C. R., and McMurdie, H. F., Phase Diagrams for Ceramists, 3rd ed. (The American Ceramic Society, Westerville, OH, 1974), p. 69.Google Scholar
17Tisone, T. C. and Drobek, J., J. Vac. Sci. Technol. 9(1), 271 (1971).CrossRefGoogle Scholar
18Roy, R. A., Etzold, K. F., and Cuomo, J. J., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 141.Google Scholar
19Chu, Y. F. and Ruckenstein, E., Surf. Sci. 67, 517 (1977).CrossRefGoogle Scholar
20Sun, Y. M., Belton, D. N., and White, J. M., J. Phys. Chem. 90, 5178 (1986).CrossRefGoogle Scholar