Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T19:20:53.892Z Has data issue: false hasContentIssue false

Purification of single-walled carbon nanotubes synthesized by the hydrogen arc-discharge method

Published online by Cambridge University Press:  31 January 2011

Pengxiang Hou
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
Chang Liu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
Yu Tong
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
Shitao Xu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
Min Liu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
Huiming Cheng*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
*
a)Address all correspondence to this author.cheng@imr.ac.cn
Get access

Abstract

A simple procedure for the purification of the single-walled carbon nanotube (SWNT) product synthesized by the hydrogen arc-discharge method was proposed and discussed. The procedure involves ultrasonication in alcohol, oxidation in fixed air, and soaking in hydrochloric acid. Most of the amorphous carbon and carbon nanoparticles as well as metal particles in the product was successfully removed, according to the results obtained from transmission electron microscopy, thermogravimetric analysis, and resonant laser Raman measurements. With this procedure, a 41 wt% yield of the SWNTs with a purity of about 96% was achieved after purification.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G., Tomanek, D., Fischer, J.E., and Smalley, R.E., Science 273, 483 (1996).CrossRefGoogle Scholar
2Journet, C., Maser, W.K., Bernier, P., Loiseau, A., de la Chapelles, M. Lamy, Lefrant, S., Deniard, P., Lee, R., and Fischer, J.E., Nature (London) 388, 756 (1997).CrossRefGoogle Scholar
3Cheng, H.M., Li, F., Su, G., Pan, H.Y., He, L.L., Sun, X., and Dresselhaus, M.S., Appl. Phys. Lett. 72, 3282 (1998).CrossRefGoogle Scholar
4Tans, S., Devoret, M.H., Dai, H., Thess, A., Smalley, R.E., Geerligs, L.J., and Dekker, C., Nature (London) 386, 474 (1992).CrossRefGoogle Scholar
5Ajayan, P.M. and Ebbesen, T.W., Rep. Prog. Phys. 60, 1025 (1997).CrossRefGoogle Scholar
6Ebbesen, T.W., Ajayan, P.M., Hiura, H., and Tanigaki, K., Nature (London) 367, 519 (1994).CrossRefGoogle Scholar
7Dujardin, E., Ebbesen, T.W., Krishnan, A., and Treacy, M.M.J., Adv. Mater. 10, 611 (1998).3.0.CO;2-8>CrossRefGoogle Scholar
8Rinzler, A.G., Liu, J., Dai, H., Nikolaev, P., Huffman, C.B., Rodriguez-Macias, F.J., Boul, P.J., Lu, A.H., Heymann, D., Colbert, D.T., Lee, R.S., Fischer, J.E., Rao, A.M., Eklund, P.C., and Smalley, R.E., Appl. Phys. A 67, 29 (1998).CrossRefGoogle Scholar
9Mizoguti, E., Nihey, F., Yudasaka, M., Iijima, S., Ichihashi, T., and Nakamura, K., Chem. Phys. Lett. 321, 297 (2000).CrossRefGoogle Scholar
10Tohji, K., Goto, T., Takahashi, H., Shinoda, Y., Shimizu, N., Jeyadevan, B., Matsuoka, I., Saito, Y., Kasuya, A., Ohsuna, T., Hiraga, K., and Nishina, Y., Nature (London) 383, 679 (1996).CrossRefGoogle Scholar
11Bandow, S., Rao, A.M., Williams, K.A., Thess, A., Smalley, R.E., and Eklund, P.C., J. Phys. Chem. B 101, 8839 (1997).CrossRefGoogle Scholar
12Shi, Z.J., Lian, Y.F., Liao, F.H., Zhou, X.H., Gu, Z.N., Zhang, Y.G., and Iijima, S., Solid State Commun. 112, 335 (1999).CrossRefGoogle Scholar
13Li, F., Cheng, H.M., Xing, Y.T., Tan, P.H., and Su, G., Carbon 38, 2041 (2000).CrossRefGoogle Scholar
14Liu, C., Cong, H.T., Li, F., Tan, P.H., Cheng, H.M., Lu, K., and Zhou, B.L., Carbon 37, 1865 (1999).CrossRefGoogle Scholar
15Rao, M., Richter, E., Bandow, S., Chase, B., Eklund, P.C., Williams, K.A., Fang, S., Subbaswamy, K.R., Menon, M., Thess, A., Smalley, R.E., Dresselhaus, G., and Dresselhaus, M.S., Science 275, 187 (1997).CrossRefGoogle Scholar