Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T14:23:44.075Z Has data issue: false hasContentIssue false

A quantitative analysis of cavitation in Al–Cu–Mg metal matrix composites exhibiting high strain rate superplasticity

Published online by Cambridge University Press:  31 January 2011

Shuichi Wada
Affiliation:
Departments of Materials Science and Mechanical Engineering, University of Southern California, Los Angeles, California 90089–1453
Mamoru Mabuchi
Affiliation:
National Industrial Research Institute, Hirate-cho, Kita-ku, Nagoya 462, Japan
Kenji Higashi
Affiliation:
Department of Mechanical Systems Engineering, College of Engineering, Osaka Prefecture University, Sakai, Osaka 593, Japan
Terence G. Langdon
Affiliation:
Departments of Materials Science and Mechanical Engineering, University of Southern California, Los Angeles, California 90089–1453
Get access

Abstract

Specimens of two Al–Cu–Mg (2124) composites, reinforced with 20 vol% of either Si3N4 particulates or Si3N4 whiskers, were tested under experimental conditions close to those for optimum high strain rate superplasticity. Both composites developed extensive internal cavitation during testing, but quantitative measurements show that significant cavity growth occurs throughout the test in the whisker-reinforced composite, but only at strains ≥1.0 in the particulate-reinforced composite. This difference in behavior is attributed to differences in the extent of a discontinuous liquid phase at the grain boundaries and at the matrix/reinforcement interfaces. It is concluded that the presence of an extensive liquid phase in the particulate-reinforced composite is beneficial for attaining high ductility because it relieves the stress concentrations from grain boundary sliding and thereby limits the growth of cavities.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mohamed, F. A. and Langdon, T. G., Acta Metall. 29, 911 (1981).Google Scholar
2.Langdon, T. G., Metall. Trans. 13A, 689 (1982).CrossRefGoogle Scholar
3.Nieh, T. G., Henshall, C. A., and Wadsworth, J., Scripta Metall. 18, 1405 (1984).CrossRefGoogle Scholar
4.Nieh, T. G., Gilman, P. S., and Wadsworth, J., Scripta Metall. 19, 1375 (1985).CrossRefGoogle Scholar
5.Higashi, K. and Mabuchi, M., in Advanced Composites '93, edited by Chandra, T. and Dhingra, A.K. (TMS, Warrendale, PA, 1993), p. 35.Google Scholar
6.Higashi, K., Mater. Sci. Eng. A 166, 109 (1993).Google Scholar
7.Mabuchi, M. and Higashi, K., Key Eng. Mater. 104–107, 225 (1995).CrossRefGoogle Scholar
8.Langdon, T. G., Mater. Sci. Eng. A 174, 225 (1994).CrossRefGoogle Scholar
9.Langdon, T. G., Acta Metall. Mater. 42, 2437 (1994).Google Scholar
10.Nieh, T. G., Wadsworth, J., and Imai, T., Scripta Metall. 26, 703 (1992).CrossRefGoogle Scholar
11.Chokshi, A. H., Bieler, T. R., Nieh, T. G., Wadsworth, J., and Mukherjee, A. K., in Superplasticity in Aerospace, edited by Heikkenen, H. C. and McNelley, T.R. (TMS, Warrendale, PA, 1988), p. 229.Google Scholar
12.Imai, T., Mabuchi, M., Tozawa, Y., and Yamada, M., J. Mater. Sci. Lett. 9, 255 (1990).CrossRefGoogle Scholar
13.Mabuchi, M., Higashi, K., and Langdon, T. G., Acta Metall. Mater. 42, 1739 (1994).CrossRefGoogle Scholar
14.Mabuchi, M. and Higashi, K., Philos. Mag. Lett. 70, 1 (1994).CrossRefGoogle Scholar
15.Koike, J., Mabuchi, M., and Higashi, K., Acta Metall. Mater. 43, 199 (1995).CrossRefGoogle Scholar
16.Higashi, K. and Mabuchi, M., Mater. Sci. Eng. A 176, 461 (1994).CrossRefGoogle Scholar
17.Iwasaki, H., Takeuchi, M., Mori, T., Mabuchi, M., and Higashi, K., Scripta Metall. Mater. 31, 255 (1994).CrossRefGoogle Scholar
18.Mabuchi, M., Iwasaki, H., Higashi, K., and Langdon, T. G., Mater. Sci. Technol. 11, 1295 (1995).CrossRefGoogle Scholar
19.Ma, Y., Zhao, X., and Langdon, T. G., in Creep and Fracture of Engineering Materials and Structures, edited by Wilshire, B. and Evans, R. W. (The Institute of Metals, London, England, 1990), p. 199.Google Scholar
20.Ma, Y. and Langdon, T. G., Acta Metall. Mater. 42, 2753 (1994).Google Scholar
21.Ma, Y. and Langdon, T. G., Metall. Mater. Trans. 27A, 873 (1996).Google Scholar
22.Ayensu, A. and Langdon, T. G., Metall. Mater. Trans. 27A, 901 (1996).Google Scholar
23.Zhao, X. and Langdon, T. G., in Superplasticity in Metals, Ceramics, and Intermetallics, edited by Mayo, M. J., Kobayashi, M., and Wadsworth, J. (Mater. Res. Soc. Symp. Proc. 196, Pittsburgh, PA, 1990), p. 215.Google Scholar
24.Ma, Y., Zhao, X., and Langdon, T. G., in Microstructural Science, edited by Kanne, W. R., Johnson, G. W. E., Braun, J. D., and Louthan, M. R. (ASM INTERNATIONAL, Materials Park, OH, 1993), Vol. 20, p. 559.Google Scholar
25.Mabuchi, M. and Higashi, K., Mater. Trans. JIM 35, 399 (1994).Google Scholar
26.Mabuchi, M. and Higashi, K., J. Mater. Res. 10, 2494 (1995).Google Scholar
27.Koike, J., Mabuchi, M., and Higashi, K., J. Mater. Res. 10, 133 (1995).CrossRefGoogle Scholar
28.Nieh, T. G. and Wadsworth, J., in Superplasticity in Advanced Materials, edited by Hori, S., Tokizane, M., and Furushiro, N. (The Japan Society for Research on Superplasticity, Osaka, Japan, 1991), p. 339.Google Scholar
29.Padmanabhan, K. A. and Davies, G. J., Superplasticity (SpringerVerlag, Berlin, 1980).CrossRefGoogle Scholar
30.Langdon, T. G., Scripta Metall. 11, 997 (1977).Google Scholar
31.Langdon, T. G., Metal Sci. 16, 175 (1982).CrossRefGoogle Scholar
32.Speight, M. V. and Beere, W., Metal Sci. 9, 190 (1975).Google Scholar
33.Chokshi, A. H. and Langdon, T. G., Acta Metall. 35, 1089 (1987).CrossRefGoogle Scholar
34.Ma, Y. and Langdon, T. G., Scripta Metall. Mater. 26, 1239 (1992).Google Scholar
35.Hancock, J. W., Metal Sci. 10, 319 (1976).CrossRefGoogle Scholar
36.Ghosh, A. K., in Deformation of Polycrystals: Mechanisms and Microstructures, edited by Hansen, N., Horsewell, A., Leffers, T., and Lilholt, H. (Risø National Laboratory, Roskilde, Denmark, 1981), p. 277.Google Scholar
37.Ma, Y., Zhou, M., Sørensen, O. T., and Langdon, T. G., in Super-plasticity and Superplastic Forming, edited by Ghosh, A. K. and Bieler, T. R. (TMS Warrendale, PA, 1995), p. 93.Google Scholar
38.Chokshi, A. H. and Langdon, T. G., Acta Metall. Mater. 38, 887 (1990).Google Scholar
39.Jones, H., Metal. Sci. J. 5, 15 (1971).CrossRefGoogle Scholar
40.Mohamed, F. A. and Langdon, T. G., Metall. Trans. 5, 2339 (1974).Google Scholar