Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T14:56:42.040Z Has data issue: false hasContentIssue false

The R8–BC8 phases and crystal growth in monocrystalline silicon under microindentation with a spherical indenter

Published online by Cambridge University Press:  03 March 2011

I. Zarudi
Affiliation:
School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006, Australia
L.C. Zhang*
Affiliation:
School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006, Australia
J. Zou
Affiliation:
Division of Materials and Centre for Microscopy and Microanalysis, The University of Queensland, QLD 4047, and Australian Key Centre for Microscopy and Microanalysis, and Electron Microscope Unit, The University of Sydney, NSW 2006, Australia
T. Vodenitcharova
Affiliation:
School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006, Australia
*
a)Address all correspondence to this author. e-mail: zhang@aeromech.usyd.edu.au
Get access

Abstract

The morphology and distribution of high-pressure metastable phases BC8 and R8, formed in monocrystalline silicon under microindentation, were identified and assessed using transmission electron microscopy nanodiffraction analysis. It was discovered that the crystal growth inside the transformation zone was stress-dependent with large crystals in its central region. The crystal size could also be increased using higher maximum indentation loads. The BC8 and R8 phases distributed unevenly across the transformation zone, with BC8 crystals mainly in the center of the zone and smaller R8 fragments in the peripheral regions. Such phase distribution was in agreement with the theoretical residual stress analysis.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bradby, J.E., Williams, J.S., Wong-Leung, M.V., Swain, M.V. and Munroe, P., Appl. Phys. Lett. 77, 3749 (2000).CrossRefGoogle Scholar
2.Callagan, D.L. and Morris, J.C., J. Mater. Res. 7, 1614 (1992).CrossRefGoogle Scholar
3.Cheong, W.C.D. and Zhang, L.C., Nanotechnology 11, 173 (2000).CrossRefGoogle Scholar
4.Clarke, D.R., Kroll, M.C., Kirchner, P.D. and Cook, R.F., Phys. Rev. Lett. 60, 2156 (1988).CrossRefGoogle Scholar
5.Domnich, V., Gogotsi, Y.G. and Dub, S.N., Appl. Phys. Lett. 76, 2214 (2000).CrossRefGoogle Scholar
6.Gridneva, I.V., Milman, Y.V. and Trefilov, V.I., Phys. Status Solidi 14, 177 (1972).CrossRefGoogle Scholar
7.Mann, A., van Heerden, D., Pethica, J., Bowes, P. and Weihs, T., Philos. Mag. A 82, 1921 (2002).CrossRefGoogle Scholar
8.Mann, A.B., Heerden, D.V., Pethica, J.B. and Weihs, T.P., J. Mater. Res. 15, 1754 (2000).CrossRefGoogle Scholar
9.Pharr, G.M., Oliver, W.C. and Clarke, D.R., Scr. Metall. 23, 1949 (1989).CrossRefGoogle Scholar
10.Wu, Y.Q., Yang, X.Y. and Xu, Y.B., Acta Mater. 47, 2431 (1999).CrossRefGoogle Scholar
11.Zarudi, I. and Zhang, L.C., Tribol. Int. 32, 701 (1999).CrossRefGoogle Scholar
12.Zarudi, I., Zou, J. and Zhang, L.C., Appl. Phys. Lett. 82, 1027 (2003).CrossRefGoogle Scholar
13.Zarudi, I., Zhang, L.C. and Swain, M.V., J. Mater. Res. 18, 758 (2003).CrossRefGoogle Scholar
14.Zhang, L.C. and Zarudi, I., Key Eng. Mater. 177–180, 121 (2000).CrossRefGoogle Scholar
15.Zhang, L.C. and Zarudi, I., Int. J. Mech. Sci. 43, 1985 (2001).CrossRefGoogle Scholar
16.Page, T.F., Oliver, W.C. and McHargue, C.J., J. Mater. Res. 7, 450 (1992).CrossRefGoogle Scholar
17.Weppelmann, E.R., Field, J.S. and Swain, M.V., J. Mater. Res. 8, 830 (1993).CrossRefGoogle Scholar
18.Crain, J., Ackland, G.J., Maclean, J.R., Piltz, R.O., Hatton, P.D. and Pawley, G.S., Phys. Rev. B. 50, 13043 (1994).CrossRefGoogle Scholar
19.Piltz, R.O., Macleans, S.J., Clark, S.J., Ackland, G.L., Hatton, P.D. and Crain, J., Phys. Rev. B. 52, 4072 (1995).CrossRefGoogle Scholar
20.Bradby, J.E., Williams, J.S., Wong-Leung, M.V., Swain, M.V. and Munroe, P., J. Mater. Res. 16, 1500 (2001).CrossRefGoogle Scholar
21.Gogotsi, Y.G., Domnich, V., Dub, S.N., Kailer, A. and Nickel, K.G., J. Mater. Res. 15, 871 (2000).CrossRefGoogle Scholar
22.Zarudi, I., Zhang, L.C. and Swain, M.V., Appl. Phys. Lett. 82, 1027 (2003).CrossRefGoogle Scholar
23.Ge, D., Domnich, V. and Gogotsi, Y., J. Appl. Phys. 93, 2418 (2003).CrossRefGoogle Scholar
24.Vodenitcharova, T. and Zhang, L.C., Int. J. Solids Struct. 40, 2989 (2003).CrossRefGoogle Scholar
25.Vodenitcharova, T. and Zhang, L.C.Int. J. Solids Struct. (under review).Google Scholar
26. ADINA, User-Supplied Options manual. ADINA R&D, Inc, Watertown, MA (1997).Google Scholar
27.Zhang, L.C., Solid Mechanics for Engineers (Palgrave, Houndmills, U.K., 2001).Google Scholar