Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T15:42:41.487Z Has data issue: false hasContentIssue false

Radiolytic effects in organic compounds induced and analyzed by a 15N beam

Published online by Cambridge University Press:  03 March 2011

S. Jans
Affiliation:
Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg, Germany
S. Kalbitzer*
Affiliation:
Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg, Germany
P. Oberschachtsiek
Affiliation:
Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg, Germany
M. Behar
Affiliation:
Instituto de Fisica, Universidade Federal Rio Grande do Sul, 90510 Porto Alegre, Brazil
*
a)Address all correspondence to this author.
Get access

Abstract

Cd-arachidat in the form of Langmuir-Blodgett films and thick photoresist layers of AZ5412H have been exposed to 15N-ion beams. The physico-chemical state of these targets as a function of the 15N fluence has been monitored by the 15N nuclear reaction with the respective H component. In this way, radiolytic changes in H distribution and bonding have been measured. In particular, diffusion and desorption processes have quantitatively been followed up to fluences of about 1 × 1016 N/cm2 at temperatures as low as 40 K. The correlated changes in H bonding, obtained by analyzing the concomitant Doppler widths as a function of the 15N fluence, consist of both decomposition and restoration of C-H and H-H molecular groups.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Zinke-Allmang, M., Kalbitzer, S., and Weiser, M., Z. Phys. A320, 697 (1985).Google Scholar
2Zinke-Allmang, M. and Kalbitzer, S., Z. Phys. A323, 251 (1986).Google Scholar
3Izsak, K., Kalbitzer, S., Weiser, M., and Zinke-Allmang, M., Nucl. Instrum. Methods B33, 578 (1988).CrossRefGoogle Scholar
4Venkatesan, T., Calcagno, L., Elman, B. S., and Foti, G., in Ion Beam Modification of Insulators, edited by Mazzoldi, P. and Arnold, G. (Elsevier Science Publishers, New York, 1987), and references therein.Google Scholar
5Ziegler, J. F., Biersack, J. P., and Littmark, U., in Stopping and Ranges of Ions in Solids, edited by Ziegler, J. F. (Pergamon, New York, 1985), Vol. 1; Code version: TRIM 91.Google Scholar
6Damjantschitsch, H., Weiser, M., Heusser, G., Kalbitzer, S., and Mannsperger, H., Nucl. Instrum. Methods 218, 129 (1983).CrossRefGoogle Scholar
7Zinke-Allmang, M., Kössler, V., and Kalbitzer, S., Nucl. Instrum. Methods B15, 563 (1986).Google Scholar
8Brandt, W. and Kitagawa, M., Phys. Rev. B 25, 5631 (1982).CrossRefGoogle Scholar
9Jans, S., Kalbitzer, S., Oberschachtsiek, P., and Behar, M., Nucl. Instrum. Methods B83, 1 (1993).CrossRefGoogle Scholar
10Fechtig, H. and Kalbitzer, S., in Potassium-Argon Dating, edited by Schaeffer, O.A. and Zähringer, J. (Springer-Verlag, Berlin-Heidelberg, 1966), p. 68.Google Scholar
11Reinelt, M., Kalbitzer, S., and Müller, G., J. Non-Cryst. Solids 59/60, 169 (1983).CrossRefGoogle Scholar
12Pilakouta, M., Aslanoglou, X., Savidou, A., Paradellis, T., and Sideris, E., Nucl. Instrum. Methods B68, 141 (1992).Google Scholar
13Calcagno, L., Compagnini, G., and Foti, G., Nucl. Instrum. Methods B65, 413 (1992), and references therein.Google Scholar
14Calcagno, L. and Foti, G., in Extended Abstracts No. 17, Fractal Aspects of Materials: Disordered Systems, edited by Weitz, D. A., Sander, L. M., and Mandelbrot, B. B. (Materials Research Society, Pittsburgh, PA, 1988), p. 511.Google Scholar
15Abel, F., private communication.Google Scholar
16Milleville, M., Fuhs, W., Demond, F. J., Mannsperger, H., Müller, G., and Kalbitzer, S., Appl. Phys. Lett. 34, 173 (1979).Google Scholar
17Endisch, D., Rauch, F., Götzelmann, A., Reiter, G., and Stamm, M., Nucl. Instrum. Methods B62, 513 (1992).CrossRefGoogle Scholar