Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T16:13:28.546Z Has data issue: false hasContentIssue false

Raman microprobe measurements of residual strains at the interfaces of Si on quartz

Published online by Cambridge University Press:  31 January 2011

Y. M. Cheong
Affiliation:
Center for the Materials Science and Engineering, The University of Texas at Austin. Austin, Texas 78712
H. L. Marcus
Affiliation:
Center for the Materials Science and Engineering, The University of Texas at Austin. Austin, Texas 78712
F. Aclar
Affiliation:
Instruments S. A., Inc., 6 Olsen Avenue, Edison, New Jersey 08820-2419
Get access

Abstract

In order to quantitatively determine the residual stresses at the interfaces of laminate composite materials, a model involving exponential stress gradient in the substrate and no stress gradient in the film was derived. The measurements of residual strains at the Si/quartz interfaces using the Raman microprobe were compared to expected strains by the model. The model shows that a small volume of substrate near the interface about 2 times the film thickness was affected by the thermal mismatch of the two regions. Approximately 5–10 times higher residual strains were expected at the substrate-side interfaces compared to the measured results. This is explained by the experiments averaging along the probe thickness of about 10μm resolution. The recrystallization process of Si film by thermal annealing was also investigated using Raman spectroscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Zeyfang, R., J. Appl. Phys. 41, 3718 (1970).CrossRefGoogle Scholar
2Hughes, A. J. and Thorsen, A. C., J. Appl. Phys. 44, 2304 (1973).CrossRefGoogle Scholar
3Brenner, A. and Senderoff, S., J. Res. Natl. Bur. Stand. 42, 105 (1949).CrossRefGoogle Scholar
4Zeyfang, R., J. Appl. Phys. 42, 1182 (1971).CrossRefGoogle Scholar
5Schlotter, H., Solid State Electron. 11, 947 (1968).CrossRefGoogle Scholar
6Ashton, J. E., Halpin, J. C., and Petit, P. H., Primer on Composite Materials: Analysis (Technomic, Stamford, CT, 1969), Chap. 5.Google Scholar
7Chen, D., Cheng, S., and Gerhardt, T. D., J. Thermal Stresses 5, 67 (1982).CrossRefGoogle Scholar
8Ganesan, S.Maradudin, A. A. and Oitmaa, J.Ann. Phys. 56, 556 (1971).CrossRefGoogle Scholar
9Cheong, Y. M. and Marcus, H. L. in Advances in Surface Treatments–Residual Stresses, edited by NikuLari, A. (Pergamon, New York, 1986), Vol. IV pp. 115.Google Scholar
10Cheong, Y. M.Marcus, H. L. and Adar, F. in Interface in Metal-Matrix Composites, Proceedings ofthe AIME-TMSConference, New Orleans, edited by Dhingra, A. K. and Fishman, S. G. (The Metallurgical Society, Warrendale, PA, 1986), p. 147.Google Scholar
11Dhamelincourt, P. Ph.D. thesis University of Lillie, 1979.Google Scholar
12Adar, F. and Clarke, D. R. in Microbeam Analysis, edited by Geiss, R. H. (San Francisco, San Francisco, CA, 1982), p. 307.Google Scholar
13Okada, T.Iwaki, T.Kasahara, H. and Yamamoto, K.Jpn. J. Appl. Phys. 24, 161 (1985).CrossRefGoogle Scholar
14Okada, T.Iwaki, T.Kasahara, H. and Yamamoto, K.Solid State Commun. 52, 363 (1984).CrossRefGoogle Scholar
15Iqbal, Z. and Veprek, S.J. Phys. C 15, 377 (1982).Google Scholar
16Iqbal, Z.Veprek, S.Webb, A. P. and Capezzuto, P.Solid State Commun. 37, 993 (1981).CrossRefGoogle Scholar
17Brodsky, M. H. andCardona, M.J. Non-Cryst. Solids 31, 81 (1978).CrossRefGoogle Scholar
18Adar, F. in Microbeam Analysis, edited by Geiss, R. H. (San Francisco, San Francisco, CA, 1981), p. 67.Google Scholar
19Yamada, M.Yamazaki, K.Kotani, H.Yamamoto, K. and Abe, K., in Laser and Electron-Beam Solid Interactions and Materials Processing, edited by Gibbons, J. F.Hess, L. D. and Sigmon, T. W. (Elsevier, New York, 1981), Vol. 1, p. 503.Google Scholar
20Lemos, V.Cerdeira, F.Scarparo, M. A. F. and Katiyer, R. S.Phys. Rev. B 16, 5560 (1977).CrossRefGoogle Scholar
21Englert, Th. and Abstreiter, G.Solid State Electron. 23, 31 (1981).CrossRefGoogle Scholar
22Venugopalan, S. and Ramdas, A. K.Phys. Rev. B 8, 717 (1973).CrossRefGoogle Scholar
23Anastassakis, E.Pinczuk, A.Burstein, E.Pollak, F. H. and Cardona, M., Solid State Commun. 8, 133 (1970).CrossRefGoogle Scholar
24Chandrasekhar, M.Renucci, J. B. and Cardona, M.Phys. Rev. B17, 1623 (1978).CrossRefGoogle Scholar
25Joyce, B. A.Bennett, R. J.Bicknell, R. W. and Etter, P. J., Trans. Metall. Soc. AIME 233, 556 (1965).Google Scholar
26Fauchet, P. M.Campbell, I. H. and Adar, F.Appl. Phys. Lett. 47, 479 (1985).CrossRefGoogle Scholar
27Klug, H. P. and Alexander, L. E.X-ray Diffraction Procedures (Wiley, New York, 1954), Chap. 9.Google Scholar
28Touloukian, Y. S.Kirby, R. K.Taylor, R. E. and Desai, P. D.Thermal Expansion, Metallic Elements and Alloys (Plenum, New York, 1975), p. 154.Google Scholar
29Touloukian, Y. S.Kirby, R. K.Taylor, R. E. and Lee, T. Y. R.Thermal Expansion, Non-Metallic Solids (Plenum, New York, 1977), p. 350.CrossRefGoogle Scholar
30There is much literature on the stress in Si on sapphire, for example, Ref. 19, Ohmura, Y., Inoue, T., and Yoshii, T., Solid State Commun. 37, 583 (1981); M. S. Abrahams, C. J. Buiocchi, J. F. Corboy, Jr., and G. W. Cullen, Appl. Phys. Lett. 28, 275 (1976); G. A. Sai-Halasz, F. F. Fang, T. O. Sedgwick, and A. Segmuller, Appl. Phys. Lett.36,419 (1980); Y. Kobayashi,T. Suzuki, and M.Tamura, Jpn. J. Appl. Phys. 20, L249 (1981); S. R. J. Brueck, B. Y. Tsaur, J. C. C. Fan, D. V. Murphy, T. F. Deutsch, and D. J. Silversmith, Appl. Phys. Lett. 40, 895 (1982).Google Scholar