Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T19:21:31.898Z Has data issue: false hasContentIssue false

Raman microprobe study of nanophase TiO2 and oxidation-induced spectral changes

Published online by Cambridge University Press:  31 January 2011

J. C. Parker
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
R. W. Siegel
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

A Raman microprobe study of as-compacted nanophase TiO2 was carried out to investigate the spatial inhomogeneity of its anatase and rutile phases. Also, changes in the observed Raman spectra (line shifts and broadening) were investigated as a function of annealing at temperatures up to 600°C in argon or air. Microscopic phase inhomogeneity is observed and Raman spectral changes are shown to result from inhomogeneous oxygen deficiency in the nanophase TiO2. The line positions corresponding to the Raman active Eg modes in both anatase and rutile are found to be sensitive to this oxygen deficiency and are potential quantitative indicators of such deviations from stoichiometry.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Siegel, R.W. and Hahn, H., in Current Trends in the Physics of Materials edited by Yussouff, M. (World Scientific Publ. Co., Singapore, 1987), p.403.Google Scholar
2Andres, R. P., Averback, R. S., Brown, W. L., Brus, L. E., Goddard, W. A., III, Kaldor, A., Louie, S. G., Moskovits, M., Peercy, P. S., Riley, S. J., Siegel, R.W., Spaepen, F., and Wang, Y., J. Mater. Res. 4 (3), 704 (1989).CrossRefGoogle Scholar
3Kear, B. H., Cross, L.E., Keem, J. E., Siegel, R.W., Spaepen, F., Taylor, K. C., Thomas, E. L., and Tu, K-N., Research Opportunities for Materials with Ultrafine Microstructures, National Materials Advisory Board-454 (National Academy Press, Washington, DC, 1989).Google Scholar
4Granqvist, C.G. and Buhrman, R.A., J. Appl. Phys. 47, 2200 (1976).CrossRefGoogle Scholar
5Gleiter, H., in Deformation of Polycrystals: Mechanisms and Microstructures edited by Hansen, N., Horsewell, A., Leffers, T., and Lilholt, H. (Risø National Laboratory, Roskilde, Denmark, 1981), p. 15.Google Scholar
6Melendres, C.A., Narayanasamy, A., Maroni, V. A., and Siegel, R.W., J. Mater. Res. 4 (5), 1246 (1989).CrossRefGoogle Scholar
7Mayo, M. J., Siegel, R.W., Narayanasamy, A., and Nix, W. D., J. Mater. Res. 5 (5), 1073 (1990).CrossRefGoogle Scholar
8Siegel, R.W., Ramasamy, S., Hahn, H., Li, Z., Lu, T., and Gronsky, R., J. Mater. Res. 3, 1367 (1988).CrossRefGoogle Scholar
9Ohsaka, T., Izumi, F., and Fujiki, Y., J. Raman Spec. 7, 321 (1978).Google Scholar
10Capwell, R. J., Spagnolo, F., and DeSessa, M.A., Appl. Spec. 26, 537 (1972).CrossRefGoogle Scholar
11Chang, H.L.M., Parker, J.C., You, H., Xu, J.J., and Lam, D.J. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1990), Vol. 168, p. 343.Google Scholar
12Li, Z., Ramasamy, S., Hahn, H., and Siegel, R.W., Mater. Lett. 6, 195 (1988).CrossRefGoogle Scholar
13Ohsaka, T., Yamaoka, S., and Shimomura, O., Solid State Commun. 30, 345 (1979).CrossRefGoogle Scholar
14Hara, Y. and Nicol, M., Phys. Status Solidi B 94, 317 (1979); see also G. A. Samara and P. S. Peercy, Phys. Rev. B 7, 1131 (1973).CrossRefGoogle Scholar
15Merle, P., Pascual, J., Camassel, J., and H. Mathieu, Phys. Rev. B 21, 1617 (1980).CrossRefGoogle Scholar
16Balachandran, U. and Eror, N. G., J. Solid State Chem. 42, 276 (1982).CrossRefGoogle Scholar
17Porto, S. P. S., Fleury, P. A., and Damen, T. C., Phys. Rev. 154, 522 (1967).CrossRefGoogle Scholar
18Breckenridge, R. G. and Hossler, W. R., Phys. Rev. 91, 793 (1953).CrossRefGoogle Scholar
19Anderson, J.S. and Tilley, R.S.D., J. Solid State Chem. 2, 472 (1970).CrossRefGoogle Scholar
20Bursill, L. A., Hyde, B. G., Terasaki, O., and Watanabe, D., Philos. Mag. 20, 347 (1969).CrossRefGoogle Scholar
21Krishnamurthy, N. and Haridasan, T. M., Ind. J. Pure and Appl. Phys. 17, 67 (1979).Google Scholar
22Traylor, J. G., Smith, H. G., Nicklow, R. M., and Wilkinson, M. K., Phys. Rev. B 3, 3457 (1971).CrossRefGoogle Scholar
23Maroni, V. A., J. Phys. Chem. Solids 47, 307 (1988).CrossRefGoogle Scholar