Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T07:49:34.915Z Has data issue: false hasContentIssue false

Raman spectroscopic determination of phase evolutions in LiAlxCo1−xO2 battery materials

Published online by Cambridge University Press:  31 January 2011

P. S. Dobal
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, Puerto Rico 00931-3343
R. S. Katiyar*
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, Puerto Rico 00931-3343
M. S. Tomar
Affiliation:
Department of Physics, University of Puerto Rico, Mayaguez Campus, Mayaguez, Puerto Rico 00681
A. Hidalgo
Affiliation:
Department of Physics, University of Puerto Rico, Mayaguez Campus, Mayaguez, Puerto Rico 00681
*
a)Address all correspondence to this author. e-mail: rkatiyar@rrpac.upr.clu.edu
Get access

Abstract

Superior battery materials LiAlxCo1−xO2 (x = 0.0, 0.1, 0.3, 0.5, and 0.7) were synthesized using a solution-based route at various sintering temperatures (450–800 °C). In this communication, we report on the use of Raman spectroscopy to study effect of composition and sintering temperature on the resulting material. The phase evolutions in LiAlxCo1−xO2 compositions were studied using micro-Raman spectroscopy and a phase diagram is proposed based on the observations. For less Al content, the low-temperature phases of LiAlxCo1−xO2 showed Raman spectra corresponding to a monoclinic (space group C2/m) structure, while a low-temperature spinel (space group Fd3m) phase was observed for 50% or more Al in these compounds. All these compositions exhibited a layered hexagonal (space group R3m) structure when sintered above 700 °C. Raman spectra also revealed residual Co3O4 in the low-temperature forms of LiCoO2 and LiA10.01Co0.9O2.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For reviews, see Mater. Res. Soc. Bull. 25, (3) (2000).Google Scholar
2.Koksbang, R., Barker, J., Shi, H., and Saidi, M.Y., Solid State Ionics 84, 1 (1996).CrossRefGoogle Scholar
3.Jones, C.D.W., Rossen, E., and Dahn, J.R., Solid State Ionics 68, 65 (1994).CrossRefGoogle Scholar
4.Stoyannova, R., Zhecheva, E., and Zarkova, L., Solid State Ionics 73, 233 (1994).CrossRefGoogle Scholar
5.Ceder, G., Chiang, Y-M., Sadoway, D.R., Aydinol, M.K., Jang, Y-I., and Huang, B., Nature 392, 694 (1998).CrossRefGoogle Scholar
6.Jang, Y-I., Huang, B., Wang, H., Sadoway, D.R., Ceder, G., Chiang, Y-M., Liu, H., and Tamura, H., J. Electrochem. Soc. 146, 862 (1999).CrossRefGoogle Scholar
7.Gummow, R.J., Tackeray, M.M., David, W.I.F., and Hull, S., Mater. Res. Bull. 27, 327 (1992); Mater. Res. Bull. 28, 1177 (1993).CrossRefGoogle Scholar
8.Rossen, E., Rimers, J.N., and Dahn, J.R., Solid State Ionics 62, 53 (1993).CrossRefGoogle Scholar
9.Reimers, J.N. and Dahn, J.R., J. Electrochem. Soc. 139, 2091 (1992).CrossRefGoogle Scholar
10.Ohzuku, T. and Ueda, A., J. Electrochem. Soc. 141, 2972 (1994).CrossRefGoogle Scholar
11.Huang, W. and Frech, R., Solid State Ionics 86–88, 395 (1996).CrossRefGoogle Scholar
12.Honders, A., der Kinderen, J.M., van Heerden, A.H., de Wit, J.H.W., and Broers, G.H.J., Solid State Ionics 14, 205 (1984); Solid State Ionics 15, 265 (1985).CrossRefGoogle Scholar
13.Moore, R.K. and White, W.B., J. Am. Ceram. Soc. 53, 679 (1970).CrossRefGoogle Scholar
14.Inaba, M., Iriyama, Y., Ogumi, Z., Todzuka, Y., and Tasaka, A., J. Raman Spectrosc. 28, 613 (1997).3.0.CO;2-T>CrossRefGoogle Scholar
15.Bersani, D., Lottici, P.P., and Ding, X-Z., Solid State Commun. 72, 73 (1998).Google Scholar
16.Inaba, M., Todzuka, Y., Yoshida, H., Grincourt, Y., Tasaka, A., Tomida, Y., and Ogumi, Z., Chem. Lett. 889 (1995).CrossRefGoogle Scholar
17.Hadjiev, V.G., Iliev, M.N., and Vergilov, I.V., J. Phys. C: Solid State Phys. 21, L119 (1998).Google Scholar
18.Chen, G., Hao, W., Shi, Y., Wu, Y., and Perkowitz, S., J. Mater. Res. 15, 583 (2000).CrossRefGoogle Scholar
19.Buta, S., Morgan, D., van der Ven, A., Aydinol, M.K., and Ceder, G., J. Electrochem. Soc. 146, 4335 (1999).CrossRefGoogle Scholar