Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T14:10:59.142Z Has data issue: false hasContentIssue false

Rate limitation in low pressure diamond growth

Published online by Cambridge University Press:  31 January 2011

Hans Rau
Affiliation:
Philips GmbH Forschungslaboratorium Aachen, D5100 Aachen, Germany
Friederike Picht
Affiliation:
Philips GmbH Forschungslaboratorium Aachen, D5100 Aachen, Germany
Get access

Abstract

We performed diamond deposition experiments from a gas phase containing H2, CH4, and sometimes CO, using a microwave plasma ball reactor operating at 400 mbar pressure. The molybdenum substrates were stamped with a suitable tool to form a number of flattened cones on its surface. A strong preference for crystal growth on top of the cones was observed. Numerical calculations were used to solve the underlying thermal conduction and diffusion problems. At the substrate, the flow of the active species entering by diffusion from the bulk of the gas phase was balanced by those leaving the system due to incorporation in the crystals. Comparison with the experiments showed that at least 10% of the active species striking the surface are incorporated. Thus, the limitation of diamond growth in our investigation lies in gas phase transport and not in incorporation difficulties at the growing surface.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bachmann, P. K., Adv. Mater. 2, 195 (1990).Google Scholar
2.Wittaker, A. G., Science 200, 763 (1978).Google Scholar
3.Matsumoto, S., Sato, Y., Kamo, M., and Setaka, N., Jpn. J. Appl. Phys., part 2 21, L183 (1982).CrossRefGoogle Scholar
4.Bachmann, P. K., Drawl, W., Knight, D., Weimer, R., and Messier, R. F., in Extended Abstracts No. 15, Diamond and Diamondlike Materials, edited by Johnson, G. H., Badzian, A. R., and Geis, M. W. (Materials Research Society, Pittsburgh, PA, 1988).Google Scholar
5.Meyer, D. E., Ianno, N. J., Woollam, J.A., Swartzlander, A. B., and Nelson, A. J., J. Mater. Res. 3, 1397 (1988).CrossRefGoogle Scholar
6.Ohtake, N. and Yoshikawa, M., J. Electrochem. Soc. 137, 717 (1990).CrossRefGoogle Scholar
7.Matsui, Y., Yuuki, A., Sahara, M., and Hirose, Y., Jpn. J. Appl. Phys. 28, 1718 (1989).Google Scholar
8.Angus, J. C., Buck, F. A., Sunkara, M., Groth, T. F., Hayman, C. C., and Gat, R., MRS Bulletin, October 1989.Google Scholar
9.Harris, S. J. and Martin, L. R., J. Mater. Res. 5,2313 (1990).CrossRefGoogle Scholar
10.Frenklach, M. and Spear, K. E., J. Mater. Res. 3, 133 (1988).CrossRefGoogle Scholar
11.Spear, K. E., J. Am. Ceram. Soc. 72, 171 (1989).Google Scholar
12.Harris, S. J., J. Appl. Phys. 65, 3044 (1989).CrossRefGoogle Scholar
13.Mitsuda, Y., Tanaka, K., and Yoshida, T., J. Appl. Phys. 67, 3604 (1990).Google Scholar
14.Kawato, T. and Kondo, K., Jpn. J. Appl. Phys. 26, 1429 (1987).CrossRefGoogle Scholar
15.Cappelli, M. A. and Paul, P. H., J. Appl. Phys. 67, 2596 (1990).CrossRefGoogle Scholar
16.Harris, S.J. and Weiner, A. M., J. Appl. Phys. 67, 6520 (1990).Google Scholar
17.Hay, S. O., Roman, W. C., and Colket, M. B., III J. Mater. Res. 5, 2387 (1990).Google Scholar
18.Chu, C. J., D'Evelyn, M. P., Hauge, R. H., and Margrave, J. L., J. Mater. Res. 5, 2405 (1990).Google Scholar
19.Harris, S. J., Appl. Phys. Lett. 56, 2298 (1990).Google Scholar
20.Valone, S. M., Trkula, M., and Laia, J. R., J. Mater. Res. 5, 2296 (1990).Google Scholar
21.Huang, D., Frenklach, M., and Maroncelli, M., J. Phys. Chem. 92, 379 (1988).Google Scholar
22.Rau, H. and Trafford, B., J. Phys. D, Appl. Phys. 23, 1637 (1990).Google Scholar
23.Landolt-Bönstein, Zahlenwerte und Funktionen II. Band, 5.Teil, Bandteil b (Springer-Verlag, Berlin-Heidelberg-New York, 1968).Google Scholar
24.Dittmer, G., Philips GmbH Forschungslaboratorium Aachen, private communication.Google Scholar
25.van den Brekel, C. H. J., Philips Res. Rep. 32, 118 (1977).Google Scholar
26.DebRoy, T., Tankala, K., Yarbrough, W.A., and Messier, R., J. Appl. Phys. 68, 2424 (1990).Google Scholar