Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-02T20:05:05.915Z Has data issue: false hasContentIssue false

The reaction between a TiNi shape memory thin film and silicon

Published online by Cambridge University Press:  31 January 2011

Susanne Stemmer
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106
Gerd Duscher
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, 70174 Stuttgart, Germany
Christina Scheu
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, 70174 Stuttgart, Germany
Arthur H. Heuer
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106
Manfred Rühle
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, 70174 Stuttgart, Germany
Get access

Abstract

The reaction between shape-memory TiNi thin films and silicon has been characterized by conventional, analytical, and high-resolution transmission electron microscopy. A reaction layer is formed during the 525 °C post-deposition crystallization anneal of the sputter-deposited TiNi, and consists of several phases: Ti2Ni, a nickel silicide, and a ternary titanium nickel silicide. The mechanism for the interlayer formation is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ishida, A., Takei, A., and Miyazaki, S., Thin Solid Films 228, 210 (1993).Google Scholar
2.Jardine, A. P., Madsen, J. S., and Mercado, P. G., Mat. Charact. 32, 169 (1994).Google Scholar
3.Miyazaki, S. and Nomura, K., Proc. IEEE Micro Electro Mechanical Systems, Oiso, Japan (1994), p. 176.Google Scholar
4.Wolf, R. H. and Heuer, A. H., J. Microelectromechanical Systems 4, 206 (1995).CrossRefGoogle Scholar
5.Su, Q., Hua, S. Z., and Wuttig, M., J. Adhesion Sci. Technol. 8, 625 (1994).Google Scholar
6.Johnson, A. D. and Busch, J. D., “Development of a digital storage medium using thin film shape memory alloy,” NSAS SBIR Phase II Final Report 1992 (Grant No. NAS2–13113).Google Scholar
7.de Reus, R., in Intermetallic Compounds: Vol. 2, Practice, edited by Westbrook, J. H. and Fleischer, R. L. (John Wiley Ltd., Chichester, England, 1994), pp. 603635.Google Scholar
8.Hung, L-S., Mater. Sci. Reports 7, 221 (1991).CrossRefGoogle Scholar
9.Westbrook, J. H., DiCerbo, R. K., and Peat, A. J., GE Report 58-RL-2117 (1958).Google Scholar
10.Markiv, V. Ya., Gladyshevskii, E. I., Kripyakevich, P. I., and Fedoruk, T. I., Inorg. Mat., transl. Izvestiya Akad. Nauk SSR, Neorg. Mat. 2, 1126 (1966).Google Scholar
11.Hung, L. S. and Mayer, J. W., J. Appl. Phys. 60, 1002 (1986).CrossRefGoogle Scholar
12.Setton, M., Horache, E. H., Van der Spiegel, J., Santiago, J. J., Fischer, J. E., and Siegal, M., in Beam-Solid Interactions and Transient Processes, edited by Thompson, M. O., Picraux, S. T., and Williams, J. S. (Mater. Res. Soc. Symp. Proc. 74, Pittsburgh, PA, 1987), p. 685.Google Scholar
13.Setton, M., Van der Spiegel, J., and Rothmann, B., J. Mater. Res. 4, 1218 (1989).CrossRefGoogle Scholar
14.Sieber, I., Lange, H., and Schade, K., Phys. Status Solidi (a) 126, 171 (1991).CrossRefGoogle Scholar
15.Bardos, D. I., Gupta, K. P., and Beck, P. A., Trans. Metall. Soc. AIME 221, 1087 (1961).Google Scholar
16.Föll, H., Ho, P. S., and Tu, K. N., Philos. Mag. A 49, 165 (1984).Google Scholar
17.Yurko, G. A., Barton, J. W., and Parr, J. G., Acta Crystallogr. 12, 909 (1959).CrossRefGoogle Scholar
18.Pretorius, R., Marais, T. K., and Theron, C. C., Mater. Sci. Eng. R 10, 1 (1993).Google Scholar