Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T04:23:45.905Z Has data issue: false hasContentIssue false

Reaction Pathways at the Iron–microspherical Silica Interface: Mechanistic Aspects of the Formation of Target Iron Oxide Phases

Published online by Cambridge University Press:  31 January 2011

Sivarajan Ramesh
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat Gan-52900, Israel
Israel Felner
Affiliation:
Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
Yuri Koltypin
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat Gan-52900, Israel
Aharon Gedanken*
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat Gan-52900, Israel
*
a)Address all correspondence to this author. e-mail: gedanken@ashur.cc.biu.ac.il
Get access

Abstract

Oxidative hydrolysis of elemental iron nanoclusters on hydroxylated surfaces such as silica or alumina is known to be influenced by the degree of hydration of the surface. The understanding and control of this process is crucial in the synthesis of iron oxide coated silica microspheres with a desired magnetic property. The hydrolysis of iron nanoparticles followed by heat treatment in the case of a hydrated microspherical silica surface results in the formation of maghemite (γ–Fe2O3), whereas a dehydrated surface yielded hematite (α–Fe2O3) nanoparticles. The influence of adsorbed water on the formation of intermediate iron oxides/oxidehydroxides and the mechanistic aspects of their subsequent thermal dehydration iron oxide phases were investigated by thermogravimetric analysis, Fourier transform infrared, and Mössbauer spectroscopies. The reactions on both the hydrated and the dehydrated surfaces were found to proceed through the formation of an x-ray amorphous lepidocrocite [γ–FeO(OH)] intermediate and its subsequent dehydration to maghemite (γ–Fe2O3). Maghemite to hematite transformation was readily facilitated only on a dry silica surface. The retardation of the lepidocrocite →maghemite →hematite transformation in the case of a hydrated silica surface is suggested to arise from strong hydrogen-bonded interactions between the substrate silica and the adsorbed nanoparticles.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iler, R.K., The Chemistry of Silica, Solubility, Polymerization, Colloid and Surface Properties and Biochemistry (Wiley-Interscience, New York, 1979).Google Scholar
2.Klein, L.C., Annu. Rev. Mater. Sci. 15, 227 (1985).CrossRefGoogle Scholar
3.Hench, L.L. and West, J.K., Chem. Rev. 33, 90 (1990).Google Scholar
4.Morrow, B.A. and McFarlan, A.J., Langmuir 7, 1695 (1991).CrossRefGoogle Scholar
5.Bergna, H.E., Firment, L.E., and Swartzfager, D.G., Advances in Chemistry Series 234 (American Chemical Society, Washington, DC, 1994).Google Scholar
6.Chuang, I.S. and Maciel, G.E., J. Am. Chem. Soc. 118, 401 (1996).Google Scholar
7.Seagal, D., Chemical Synthesis of Advanced Ceramic Materials (Cambridge University Press, Cambridge, United Kingdom, 1989).CrossRefGoogle Scholar
8.Stober, W., Fink, A., and Bohn, E., J. Colloid Interface Sci. 26, 62 (1968).CrossRefGoogle Scholar
9.Smith, A.K., Hugues, F., Theolier, A., Basset, J.M., Ugo, R., Zadherigi, G.M., Bilhou, J.L., Bilhou-Bougnal, V., and Graydon, W.F., Inorg. Chem. 18, 3104 (1979).CrossRefGoogle Scholar
10.Solymosi, F. and Pasztor, M., J. Phys. Chem. 90, 5312 (1986).Google Scholar
11.McNulty, G.S., Cannon, K., and Schwartz, J., Inorg. Chem. 25, 2919 (1986).CrossRefGoogle Scholar
12.Basu, P., Panyotov, D., and Yates, J.T. Jr, J. Am. Chem. Soc. 110, 2074 (1988).CrossRefGoogle Scholar
13.Purnell, S.K., Xu, X., Goodman, D.W., and Gates, B.C., J. Phys. Chem. 98, 4076 (1994).CrossRefGoogle Scholar
14.Brenner, A., Hucul, D.A., and Hardwick, S.J., Inorg. Chem. 18, 1478 (1979).CrossRefGoogle Scholar
15.Brenner, A. and Hucul, D.A., Inorg. Chem. 18, 2836 (1979).CrossRefGoogle Scholar
16.Hucul, D.A. and Brenner, A., J. Phys. Chem. 85, 496 (1981).CrossRefGoogle Scholar
17.Ramesh, S., Koltypin, Yu., Prozorov, R., and Gedanken, A., Chem. Mater. 9, 546 (1997).Google Scholar
18.Ramesh, S., Cohen, Y., Aurbach, D., and Gedanken, A., Chem. Phys. Lett. 287, 461 (1998).CrossRefGoogle Scholar
19.Ramesh, S., Cohen, Y., Prozorov, R., Shafi, K.V.P.M, Aurbach, D., and Gedanken, A., J. Phys. Chem. B 102, 10234 (1998).CrossRefGoogle Scholar
20.Ramesh, S., Prozorov, R., and Gedanken, A., Chem. Mater. 9, 2996 (1997).CrossRefGoogle Scholar
21.Patra, A., Sominska, E., Ramesh, S., Koltypin, Yu., Zhong, Z., Minti, H., Reisfeld, R., and Gedanken, A., J. Phys. Chem. B 103, 3361 (1999).CrossRefGoogle Scholar
22.Homola, A.M., Lorenz, M.R., Mastrangelo, C.J., and Tilburg, T.L., IEEE Trans. Magn. MAG–22, 716 (1986).CrossRefGoogle Scholar
23.Philipse, A.P., van Bruggen, M.P.B., and Padhmamanoharan, C., Langmuir 10, 92 (1994).CrossRefGoogle Scholar
24.Asuha, M.N., J. Mater. Sci. Lett. 12, 1705 (1993).CrossRefGoogle Scholar
25.Chaneac, C., Tronc, E., and Jolivet, J.P., J. Mater. Chem. 6, 1905 (1996).CrossRefGoogle Scholar
26.Zhang, L., Papaefthymiou, G.C., and Ying, J.Y., J. Appl. Phys. 81, 6892 (1997).CrossRefGoogle Scholar
27.Liu, Y., Wang, A., and Claus, R.O., Appl. Phys. Lett. 71, 2265 (1997).CrossRefGoogle Scholar
28.Niznansky, D., Rehspringer, J.L., and Drillon, M., IEEE Trans. Magn. 30, 821 (1994).CrossRefGoogle Scholar
29.Ennas, G., Musinu, A., Piccaluga, G., Zedda, D., Gatteschi, D., Sangregario, C., Stanger, J.L., Concas, G., and Spano, G., Chem. Mater. 10, 495 (1998).CrossRefGoogle Scholar
30.Lund, C.R.F and Dumesic, J.A., J. Phys. Chem. 85, 3175 (1981).CrossRefGoogle Scholar
31.Burneau, A., Barres, O., Gallas, J.P., and Lavalley, J.C., Langmuir 6, 1364 (1990).CrossRefGoogle Scholar
32.Ishikawa, T., Nitta, S., and Kondo, S., J. Chem. Soc., Faraday Trans. 1 82, 2401 (1986).CrossRefGoogle Scholar
33.Ishikawa, T., Cai, W.Y., and Kandori, K., J. Chem. Soc., Faraday Trans. 88, 1173 (1992).Google Scholar
34.Cornell, R.M. and Schwertmann, U., The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses (VCH Verlagsgesellschaft, Weinheim, Germany, 1996).Google Scholar
35.Kondo, S., Muroya, M., and Fujii, K., Bull. Chem. Soc. Jpn. 47, 553 (1974).CrossRefGoogle Scholar
36.Naono, H. and Nakai, K., J. Colloid Interface Sci. 128, 146 (1989).CrossRefGoogle Scholar
37.Tronc, E., Jolivet, J.P., and Livage, J., Hyperfine Interact. 54, 737 (1990).CrossRefGoogle Scholar
38.del Monte, F., Morales, M.P., Levy, D., Fernandez, A., Ocana, M., Roig, A., Molins, E., Grady, K.O., and Serna, C.J., Langmuir 13, 3627 (1997).CrossRefGoogle Scholar