Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T14:37:43.364Z Has data issue: false hasContentIssue false

Recent trends on density functional theory–assisted calculations of structures and properties of metal–organic frameworks and metal–organic frameworks-derived nanocarbons

Published online by Cambridge University Press:  08 June 2020

Oxana V. Kharissova
Affiliation:
Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo Leon 66455, México
Boris I. Kharisov*
Affiliation:
Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo Leon 66455, México
Lucy T. González
Affiliation:
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo Leon 64890, Mexico
*
a)Address all correspondence to this author. e-mail: bkhariss@hotmail.com
Get access

Abstract

Metal–organic frameworks (MOFs) possess tuneable properties and a variety of important applications in the areas of catalysis, adsorption, gas storage, and separation, among others. Herein, recent computational studies by density functional theory (DFT) applied for simulations of MOF structure and complex architecture determination, prediction of properties, and computational characterization, including large-scale screening and geometrical properties of hypothetical MOFs, diffusion and adsorption processes in MOFs, are reviewed. DFT calculations have been applied in the MOF area to study chemical stability; mechanical, photophysical, optical, and magnetic properties; photoluminescence; porosity; and semiconductor or metallic character. The prediction of MOF analogs with open-metal sites, studies of chemical bonding and the prediction of energies by quantum mechanics allows reducing experimental efforts in the creation of MOF/polymer membranes, adsorbents for CO2 uptake, separation of C2H2/CH4, C2H2/CO2, and inert gases, radionuclides sequestration, and water adsorption, as well as other promising advances. For the MOF-derived carbons, a lack of profound DFT investigations is currently observed, being mainly restricted to the electrocatalysis area (nitrogen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction), resulting applications in batteries and other storage devices, CO2 sequestration, and absorbance of organic substances.

Type
REVIEW
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

Schröder, M., ed.: Functional metal-organic frameworks: Gas storage, separation and catalysis. In Part of the Topics in Current Chemistry Book Series, Vol. 293 (Springer, Berlin Heidelberg, Germany, 2010); p. 262.Google Scholar
Farrusseng, D., ed.: Metal–Organic Frameworks Applications from Catalysis to Gas Storage (Wiley-VCH, Weinheim, Germany, 2011); p. 414.CrossRefGoogle Scholar
Chen, B. and Qian, G., eds.: Metal–organic frameworks for photonics applications. In Part of the Series Structure and Bonding, Vol. 157 (Springer-Verlag, Berlin Heidelberg, Germany, 2014); p. 189.Google Scholar
MacGillivray, L.R. and Lukehart, C.M., eds.: Metal–Organic Framework Materials (John Wiley & Sons Ltd., Chichester, UK, 2014); p. 592.Google Scholar
Cheng, P., ed.: Lanthanide metal–organic frameworks. In Part of the Series Structure and Bonding, Vol. 163 (Springer, Berlin Heidelberg, Germany, 2015); p. 371.Google Scholar
García, H. and Navalón, S., eds.: Metal–Organic Frameworks: Applications in Separations and Catalysis (Wiley-VCH Verlag, Weinheim, Germany, 2018); p. 536.CrossRefGoogle Scholar
Yaghi, O.M., Kalmutzki, M.J., and Diercks, C.S.: Introduction to Reticular Chemistry. Metal–Organic Frameworks and Covalent Organic Frameworks (Wiley-VCH Verlag, Weinheim, Germany, 2019); p. 536.CrossRefGoogle Scholar
Butova, V.V., Soldatov, M.A., Guda, A.A., Lomachenko, K.A., and Lamberti, C.: Metal–organic frameworks: Structure, properties, methods of synthesis, and characterization. Russ. Chem. Rev. 85, 280 (2016).CrossRefGoogle Scholar
Jiao, L., Ru Seow, J.Y., Scott Skinner, W., Wang, Z.U., and Jiang, H-L.: Metal–organic frameworks: Structures and functional applications. Mater. Today 27, 43 (2019).CrossRefGoogle Scholar
Yin, X-J. and Zhu, L-G.: High-efficiency photocatalytic performance and mechanism of silver-based metal–organic framework. J. Mater. Res. 34, 991 (2019).CrossRefGoogle Scholar
Mu, F., Zhou, S., Wang, Y., and Wang, J.: Bimetallic metal–organic frameworks-derived mesoporous CdxZn1−xS polyhedrons for enhanced photocatalytic hydrogen evolution. J. Mater. Res. 34, 1773 (2019).CrossRefGoogle Scholar
Zhang, L., Li, H., Xie, H., Chen, T., Yang, C., and Wang, J.: MOF-driven ultra-small hollow Co9S8 nanoparticles embedded in porous carbon for lithium-ion batteries. J. Mater. Res. 33, 1496 (2018).CrossRefGoogle Scholar
Mezenov, Y.A., Krasilin, A.A., Dzyuba, V.P., Nominé, A., and Milichko, V.A.: Metal–organic frameworks in modern physics: Highlights and perspectives. Adv. Sci. 6, 1900506 (2019).CrossRefGoogle Scholar
Llabrés Xamena, F.X. and Gascon, J., eds.: Metal Organic Frameworks as Heterogeneous Catalysts (RSC Publishing, Cambridge, UK, 2013); p. 432.CrossRefGoogle Scholar
Jiang, J., ed.: Metal–Organic Frameworks Materials: Modeling towards Potential Engineering Applications (CRC Press Taylor & Francis Group, LLC, Boca Raton, Florida, 2015); p. 578.CrossRefGoogle Scholar
Ramasami, P., ed.: Density Functional Theory: Advances in Applications (Walter de Gruyter, Berlin, Germany. 2018); p. 233.CrossRefGoogle Scholar
Vallecillo, A. and Gray, J.: Theory and practice of model transformations. In Proceedings of the First International Conference CMT 2008, ETH Zürich, Switzerland (Springer Science & Business Media, Switzerland, 2008).Google Scholar
Tarzia, A., Takahashi, M., Falcaro, P., Thornton, A.W., Doonan, C.J., and Huang, D.M.: High-throughput screening of metal–organic frameworks for macroscale heteroepitaxial alignment. ACS Appl. Mater. Interfaces 10, 40938 (2018).CrossRefGoogle ScholarPubMed
Kaskel, S. ed.: The Chemistry of Metal–Organic Frameworks. Synthesis, Characterization, and Applications (Wiley-VCH Verlag, Weinheim, Germany, 2016); p. 849.Google Scholar
Witt, W.C., del Rio, B.G., Dieterich, J.M., and Carter, E.A.: Orbital-free density functional theory for materials research. J. Mater. Res., 33, 777 (2018).CrossRefGoogle Scholar
Density Functional Theory. Available at: https://www.sciencedirect.com/topics/physics-and-astronomy/density-functional-theory (accessed April 1, 2020).Google Scholar
Bureekaew, S. and Schmid, R.: Hypothetical 3D-periodic covalent organic frameworks: Exploring the possibilities by a first principles derived force field. CrystEngComm 15, 1551 (2013).CrossRefGoogle Scholar
Chung, Y.G., Camp, J., Haranczyk, M., Sikora, B.J., Bury, W., Krungleviciute, V., Yildirim, T., Farha, O.K., Sholl, D.S., and Snurr, R.Q.: Computation-ready, experimental metal–organic frameworks: A tool to enable high-throughput computation of nanoporous crystals. Chem. Mater. 26, 6185 (2014).CrossRefGoogle Scholar
Grand Canonical Monte Carlo. Available at: https://www.sciencedirect.com/topics/mathematics/grand-canonical-monte-carlo (accessed April 1, 2020).Google Scholar
Maurin, G.: Role of molecular simulations in the structure exploration of metal–organic frameworks: Illustrations through recent advances in the field. C. R. Chim. 19, 207 (2016).CrossRefGoogle Scholar
Coudert, F-X. and Fuchs, A.H.: Computational characterization and prediction of metal–organic framework properties. Coord. Chem. Rev. 307, 211 (2015).CrossRefGoogle Scholar
MacGillivray, L.R. ed.: Metal–Organic Frameworks: Design and Application (John Wiley & Sons, Inc., Hoboken, New Jersey, 2010); p. 349.CrossRefGoogle Scholar
Glover, T.G. and Mu, B., eds.: Gas Adsorption in Metal–Organic Frameworks Fundamentals and Applications (CRC Press Taylor & Francis, Boca Raton, 2018); p. 530.CrossRefGoogle Scholar
Ortiz, O.L. and Ramírez, L.D., eds.: Coordination Polymers and Metal–Organic Frameworks: Properties, Types and Applications (Nova Science Publishers, Inc., New York, 2012); p. 307.Google Scholar
Evans, J.D., Garai, B., Reinsch, H., Li, W., Dissegna, S., Bon, V., Senkovska, I., Fischer, R.A., Kaskel, S., Janiak, C., Stock, N., and Volkmer, D.: Metal–organic frameworks in Germany: From synthesis to function. Coord. Chem. Rev. 380, 378 (2019).CrossRefGoogle Scholar
Fraux, G., Chibani, S., and Coudert, F-X.: Modelling of framework materials at multiple scales: Current practices and open questions. Philos. Trans. R. Soc., A 377, 20180220 (2019).CrossRefGoogle ScholarPubMed
Computation-Ready, Experimental (CoRE) Metal–Organic Frameworks Database. Available at: https://gregchung.github.io/CoRE-MOFs (accessed March 5, 2020).Google Scholar
Moghadam, P.Z., Li, A., Wiggin, S.B., Tao, A., Maloney, A.G.P., Wood, P.A., Ward, S.C., and Fairen-Jimenez, D.: Development of a cambridge structural database subset: A collection of metal–organic frameworks for past, present, and future. Chem. Mater. 29, 2618 (2017).CrossRefGoogle Scholar
Wilmer, C.E., Leaf, M., Lee, C.Y., Farha, O.K., Hauser, B.G., Hupp, J.T., and Snurr, R.Q.: Large-scale screening of hypothetical metal–organic frameworks. Nat. Chem. 4, 83 (2011).CrossRefGoogle ScholarPubMed
Gu, Z-G., Heinke, L., Woll, C., Neumann, T., Wenzel, W., Li, Q., Fink, K., Gordan, O.D., and Zahn, D.R.T.: Experimental and theoretical investigations of the electronic band structure of metal–organic frameworks of HKUST-1 type. Appl. Phys. Lett. 107, 183301 (2015).CrossRefGoogle Scholar
Zhu, N., Lennox, M.J., Duren, T., and Schmitt, W.: Polymorphism of metal–organic frameworks: Direct comparison of structures and theoretical N2-uptake of topological pto- and tbo-isomers. Chem. Commun. 50, 4207 (2014).CrossRefGoogle Scholar
Alzahrani, K.A.H. and Deeth, R.J.: Molecular modeling of zinc paddlewheel molecular complexes and the pores of a flexible metal organic framework. J. Mol. Model. 22, 80 (2016).CrossRefGoogle ScholarPubMed
Quantum-Expresso. Available at: https://www.quantum-espresso.org/ (accessed April 1, 2020).Google Scholar
Degaga, G.D., Pandey, R., Gupta, C., and Bharadwaj, L.: Tailoring of the electronic property of Zn-BTC metal–organic framework via ligand functionalization: An ab initio investigation. RSC Adv. 9, 14260 (2019).CrossRefGoogle Scholar
de Oliveira, A., Ferreira de Lima, G., and Avelino De Abreu, H.: Structural and electronic properties of M-MOF-74 (M = Mg, Co or Mn). Chem. Phys. Lett. 691, 283 (2018).CrossRefGoogle Scholar
Matta, C.F. and Boyd, R.J.: The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design (Wiley, New York, 2007); p. 567.CrossRefGoogle Scholar
Fuentealba, P., Chamorro, E., and Santos, J.C.: Chapter 5 understanding and using the electron localization function. Theor. Comput. Chem. 19, 57 (2007).CrossRefGoogle Scholar
Generalized Gradient Approximation. Available at: https://www.sciencedirect.com/topics/physics-and-astronomy/generalized-gradient-approximation (accessed April 1, 2020).Google Scholar
Witman, M., Ling, S., Anderson, S., Tong, L., Stylianou, K.C., Slater, B., Smitac, B., and Haranczyk, M.: In silico design and screening of hypothetical MOF-74 analogs and their experimental synthesis. Chem. Sci. 7, 6263 (2016).CrossRefGoogle ScholarPubMed
Yang, L-M., Ravindran, P., Vajeeston, P., Svelle, S., and Tilset, M.: A quantum mechanically guided view of Cd-MOF-5 from formation energy, chemical bonding, electronic structure, and optical properties. Microporous Mesoporous Mater. 175, 50 (2013).CrossRefGoogle Scholar
Bartlett, R.J., Lotrich, V.F., and Schweigert, I.V.: Ab initio density functional theory: The best of both worlds? J. Chem. Phys. 123, 062205 (2005).CrossRefGoogle ScholarPubMed
Yang, L-M., Vajeeston, P., Ravindran, P., Fjellvag, H., and Tilset, M.: Theoretical investigations on the chemical bonding, electronic structure, and optical properties of the metal–organic framework MOF-5. Inorg. Chem. 49, 10283 (2010).CrossRefGoogle ScholarPubMed
The Vienna Ab Initio Simulation Package: Atomic Scale Materials Modelling From First Principles. Available at: www.vasp.at (accessed April 2, 2020).Google Scholar
Brozek, C.K., Michaelis, V.K., Ong, T-C., Bellarosa, L., López, N., Griffin, R.G., and Dincă, M.: Dynamic DMF binding in MOF-5 enables the formation of metastable cobalt-substituted MOF-5 analogues. ACS Cent. Sci. 1, 252 (2015).CrossRefGoogle ScholarPubMed
Nishida, J., Tamimi, A., Fei, H., Pullen, S., Ott, S., Cohen, S.M., and Fayer, M.D.: Structural dynamics inside a functionalized metal–organic framework probed by ultrafast 2D IR spectroscopy. Proc. Natl. Acad. Sci. USA 111, 18442 (2014).CrossRefGoogle ScholarPubMed
Liu, Y. and Liu, H.: Classical density functional theory for fluids adsorption in MOFs. In Metal–Organic Frameworks, Zafar, F. and Sharmin, E., eds. (INTECH, London, England, 2016) DOI: 10.5772/64632.Google ScholarPubMed
Ding, M., Cai, X., and Jiang, H-L.: Improving MOF stability: Approaches and applications. Chem. Sci. 10, 10209 (2019).CrossRefGoogle ScholarPubMed
Chen, D-M., Zhang, N-N., Tian, J-Y., Liu, C-S., and Du, M.: Pore modulation of metal–organic frameworks towards enhanced hydrothermal stability and acetylene uptake via incorporation of different functional brackets. J. Mater. Chem. A 5, 48614867 (2017).CrossRefGoogle Scholar
Moghadam, P.Z., Rogge, S.M.J., Li, A., Chow, C-M., Wieme, J., Moharrami, N., Aragones-Anglada, M., Conduit, G., Gomez-Gualdron, D.A., Van Speybroeck, V., and Fairen-Jimenez, D.: Structure-mechanical stability relations of metal–organic frameworks via machine learning. Matter 1, 219 (2019).CrossRefGoogle Scholar
Dong, H.C., Nguyen, H.L., Le, H.M., Thoai, N., Kawazoe, Y., and Nguyen-Manh, D.: Monitoring mechanical, electronic, and catalytic trends in a titanium metal organic framework under the influence of guest-molecule encapsulation using density functional theory. Sci. Rep. 8, 16651 (2018).CrossRefGoogle Scholar
Bristow, J.K., Tiana, D., and Walsh, A.: Transferable force field for metal−organic frameworks from first-principles: BTW-FF. J. Chem. Theory Comput. 10, 4644 (2014).CrossRefGoogle ScholarPubMed
Luo, Y., Ahmad, M., Schug, A., and Tsotsalas, M.: Rising up: Hierarchical metal–organic frameworks in experiments and simulations. Adv. Mater. 31, 1901744 (2019).CrossRefGoogle ScholarPubMed
Kwon, O., Yeong Kim, J., Park, S., Hwa Lee, J., Ha, J., Park, H., Ri Moon, H., and Kim, J.: Computer-aided discovery of connected metalorganic frameworks. Nat. Commun. 10, 3620 (2019).CrossRefGoogle Scholar
Abednatanzi, S., Gohari Derakhshandeh, P., Depauw, H., Coudert, F-X., Vrielinck, H., Van Der Voort, P., and Leus, K.: Mixed-metal metal–organic frameworks. Chem. Soc. Rev. 48, 2535 (2019).CrossRefGoogle ScholarPubMed
Giannakoudakis, D.A. and Bandosz, T.J.: Building MOF nanocomposites with oxidized graphitic carbon nitride nanospheres: The effect of framework geometry on the structural heterogeneity. Molecules 24, 4529 (2019).CrossRefGoogle ScholarPubMed
Hofer, W.A. and Palotas, K.. Non-linear density functional theory: A direct method to calculate many-electron charge densities. (2005). Online published, Available at: https://arxiv.org/abs/cond-mat/0508516 (accessed April 2, 2020).Google Scholar
Crystal. Available at: http://www.crystal.unito.it/index.php (accessed April 2, 2020).Google Scholar
Wilbraham, L., Coudert, F-X., and Ciofini, I.: Modelling photophysical properties of metal–organic frameworks: A density functional theory based approach. Phys. Chem. Chem. Phys. 18, 25176 (2016).CrossRefGoogle ScholarPubMed
Schwalbe, S., Trepte, K., Seifert, G., and Kortus, J.: Screening for high-spin metal organic frameworks (MOFs): Density functional theory study on DUT-8(M1,M2) (with mi = V,…,Cu). Phys. Chem. Chem. Phys. 18, 8075 (2016).CrossRefGoogle Scholar
Barthel, S., Alexandrov, E.V., Proserpio, D.M., and Smit, B.: Distinguishing metal−organic frameworks. Cryst. Growth Des. 18, 1738 (2018).CrossRefGoogle ScholarPubMed
TOPOSPRO: A comprehensive system for geometrical and topological analysis of crystal structures. Available at: https://topospro.com/ (accessed April 2, 2020).Google Scholar
Zhang, M., Bosch, M., Gentle IIIa, T., and Zhou, H-C.: Rational design of metal–organic frameworks with anticipated porosities and functionalities. CrystEngComm 16, 4069 (2014).CrossRefGoogle Scholar
Sturluson, A., Huynh, M.T., Kaija, A.R., Laird, C., Yoon, S., Hou, F., Feng, Z., Wilmer, C.E., Colon, Y.J., Chung, Y.G., Siderius, D.W., and Simon, C.M.: The role of molecular modeling & simulation in the discovery and deployment of metal–organic frameworks for gas storage and separation. Mol. Simul., 45, 1082 (2019).CrossRefGoogle Scholar
Landers, J., Gor, G.Y., and Neimark, A.V.: Density functional theory methods for characterization of porous materials. Colloids Surf., A 437, 3 (2013).CrossRefGoogle Scholar
Jeong, W.S., Lim, D-W., Kim, S., Harale, A., Yoon, M., Paik Suh, M., and Kim, J.: Modeling adsorption properties of structurally deformed metal–organic frameworks using structure–property map. Proc. Natl. Acad. Sci. U. S. A. 114, 7923 (2017).CrossRefGoogle ScholarPubMed
Becker, T.M., Lin, L-C., Dubbeldam, D., and Vlugt, T.J.H.: Polarizable force field for CO2 in M-MOF-74 derived from quantum mechanics. J. Phys. Chem. C 122, 24488 (2018).CrossRefGoogle ScholarPubMed
Allen, A.J., Wong-Ng, W., Cockayne, E., Culp, J.T., and Matranga, C.: Structural basis of CO2 adsorption in a flexible metal–organic framework material. Nanomaterials, 9, 354 (2019).CrossRefGoogle Scholar
Wong-Ng, W., Williamson, I., Lawson, M., Siderus, D.W., Culp, J.T., Chen, Y-S., and Li, L.: Electronic structure, pore size distribution, and sorption characterization of an unusual MOF, {[Ni(dpbz)][Ni(CN)4]}n, dpbz = 1,4-bis(4-pyridyl)benzene. J. Appl. Phys. 123, 245105 (2018).CrossRefGoogle Scholar
Arjmandi, M., Peyravi, M., Pourafshari Chenar, M., Jahanshahi, M., and Arjmandi, A.: Study of adsorption of H2 and CO2 on distorted structure of MOF-5 framework: A comprehensive DFT study. J. Water Environ. Nanotechnol. 3, 70 (2018).Google Scholar
Nazarian, D., Camp, J.S., Chung, Y.G., Snurr, R.Q., and Sholl, D.S.: Large-scale refinement of metal–organic framework structures using density functional theory. Chem. Mater. 29, 2521 (2017).CrossRefGoogle Scholar
Daglar, H. and Keskin, S.: High-throughput screening of metal organic frameworks as fillers in mixed matrix membranes for flue gas separation. Adv. Theory Simul. 2, 1900109 (2019).CrossRefGoogle Scholar
Lin, Y., Kong, C., and Chen, L.: Amine-functionalized metal–organic frameworks: Structure, synthesis and applications. RSC Adv. 6, 32598 (2016).CrossRefGoogle Scholar
Basdogana, Y. and Keskin, S.: Simulation and modelling of MOFs for hydrogen storage. CrystEngComm 17, 261 (2015).CrossRefGoogle Scholar
Colón, Y.J. and Snurr, R.Q.: High-throughput computational screening of metalorganic frameworks. Chem. Soc. Rev. 43, 5735 (2014).CrossRefGoogle Scholar
Castañeda, A., Jurado, M., Matz, O., Calatayud, M., Rojas, E., and Maubert, A.: Hydrogen adsorption in metal–organic frameworks Cu-BTC and Fe-BTC: A comparative theoretical study. J. Phys. Conf. 1221, 012016 (2019).CrossRefGoogle Scholar
Ozturk, Z., Ali Kose, D., Asan, A., Ozturk, B., Andac, O., and Ozkan, G.: Hydrogen storage properties of mono- and bidentate MOF structured orotate complexes. J. Mater. Res. 29, 215 (2014).CrossRefGoogle Scholar
Dangi, G.P., Pillai, R.S., Somani, R.S., Bajaj, H.C., and Jasra, R.V.: A density functional theory study on the interaction of hydrogen molecule with MOF-177. Mol. Simul. 36, 373 (2010).CrossRefGoogle Scholar
Demir, H., Stoneburner, S.J., Jeong, W., Ray, D., Zhang, X., Farha, O.K., Cramer, C.J., Siepmann, J.I., and Gagliardi, L.: Metal–organic frameworks with metal-catecholates for O2/N2 separation. J. Phys. Chem. C 123, 12935 (2019).Google Scholar
Nemati Vesali Azar, A., Velioglu, S., and Keskin, S.: Large-scale computational screening of metal organic framework (MOF) membranes and MOF-based polymer membranes for H2/N2 separations. ACS Sustainable Chem. Eng. 7, 9525 (2019).CrossRefGoogle Scholar
Keskin, S. and Alsoy Altinkaya, S.: A review on computational modeling tools for MOF-based mixed matrix membranes. Computation 7, 36 (2019).CrossRefGoogle Scholar
Azar, A.N.V. and Keskin, S.: Computational screening of MOFs for acetylene separation. Front. Chem. 6, 36 (2018).CrossRefGoogle Scholar
Liu, Y., Liu, J., and Hu, J.: Noble gas separation by a MOF with onedimensional channels. BMC Chem. Eng. 1, 3 (2019).CrossRefGoogle Scholar
Pandey, S., Jia, Z., Demaske, B., Ejegbavwo, O.A., Setyawan, W., Henager, C.H. Jr., Shustova, N., and Phillpot, S.R.: Sequestration of radionuclides in metal−organic frameworks from density functional theory calculations. J. Phys. Chem. C 123, 26842 (2019).CrossRefGoogle Scholar
Ming, Y., Kumar, N., and Siegel, D.J.: Water adsorption and insertion in MOF-5. ACS Omega 2, 4921 (2017).CrossRefGoogle ScholarPubMed
Zang, J., Nair, S., and Sholl, D.S.: Prediction of water adsorption in copper-based metal–organic frameworks using force fields derived from dispersion-corrected DFT calculations. J. Phys. Chem. C 117, 7519 (2013).CrossRefGoogle Scholar
Bernales, V., Ortuño, M.A., Truhlar, D.G., Cramer, C.J., and Gagliardi, L.: Computational design of functionalized metal−organic framework nodes for catalysis. ACS Cent. Sci. 4, 5 (2018).CrossRefGoogle ScholarPubMed
Siwaipram, S., Impeng, S., Bopp, P.A., and Bureekaew, S.: Density Functional Theory Studies of Catalytic Sites in Metal–Organic Frameworks (INTECH, London, England, 2018).Google Scholar
Rosen, A.S., Notestein, J.M., and Snurr, R.Q.: Identifying promising metal–organic frameworks for heterogeneous catalysis via high-throughput periodic density functional theory. J. Comput. Chem. 40, 1305 (2019).CrossRefGoogle ScholarPubMed
Li, J., Musho, T., Bright, J., and Wu, N.: Functionalization of a metal–organic framework semiconductor for tuned band structure and catalytic activity. J. Electrochem. Soc. 166, H3029 (2019).CrossRefGoogle Scholar
Xu, J., Kan, Y., Huang, R., Zhang, B., Wang, B., Wu, K-H., Lin, Y., Sun, X., Li, Q., Centi, G., and Su, D.: Revealing the origin of activity in nitrogen-doped nanocarbons towards electrocatalytic reduction of carbon dioxide. ChemSusChem 9, 1085 (2016).CrossRefGoogle ScholarPubMed
Sun, T., Xu, L., Wang, D., and Li, Y.: Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 12, 2067 (2019).CrossRefGoogle Scholar
Yan, Y., He, T., Zhao, B., Qi, K., Liu, H., and Yu Xia, B.: Metal/covalent–organic frameworks-based electrocatalysts for water splitting. J. Mater. Chem. A 6, 15905 (2018).CrossRefGoogle Scholar
Feng, Y., Zhang, Y., Du, G., Zhang, J., and Qu, X.: Experimental and first-principles study of a metal–organic framework with sulfur embedding cathode for enhanced performance lithium–sulfur battery. Sustainable Energy Fuels 2, 1828 (2018).CrossRefGoogle Scholar
Shen, K., Chen, X., Chen, J., and Li, Y.: Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal. 6, 5887 (2016).CrossRefGoogle Scholar
Li, H., Chi, L., Yang, C., Zhang, L., Yue, F., and Wang, J.: MOF derived porous Co@C hexagonal-shaped prisms with high catalytic performance. J. Mater. Res. 31, 3069 (2016).CrossRefGoogle Scholar
Lux, L., Williams, K., and Ma, S.: Heat-treatment of metal–organic frameworks for green energy applications. CrystEngComm 17, 10 (2015).CrossRefGoogle Scholar
Li, Y., Zhao, L., Du, Z., Du, J., Wang, W., Wang, Y., Zhao, L., Cao, X-M., and Zhong, X.: Metal–organic framework derived Co,N-bidoped carbons as superior electrode catalysts for quantum dot sensitized solar cells. J. Mater. Chem. A 6, 2129 (2018).CrossRefGoogle Scholar
Mukherjee, S., Cullen, D.A., Karakalos, S., Liu, K., Zhang, H., Zhao, S., Xu, H., More, K.L., Wang, G., and Wu, G.: Metal–organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes. Nano Energy 48, 217 (2018).CrossRefGoogle Scholar
Wang, X., Mab, Z., Chai, L., Xu, L., Zhu, Z., Hu, Y., Qian, J., and Huang, S.: MOF derived N-doped carbon coated CoP particle/carbon nanotube composite for efficient oxygen evolution reaction. Carbon 141, 643 (2019).CrossRefGoogle Scholar
Li, C., Dong, S., Tang, R., Ge, X., Zhang, Z., Wang, C., Lu, Y., and Yin, L.: Heteroatomic interface engineering in MOF-derived carbon heterostructures with built-in electric-field effects for high performance Al-ion batteries. Energy Environ. Sci. 11, 3201 (2018).CrossRefGoogle Scholar
Tang, J., Salunkhe, R.R., Zhang, H., Malgras, V., Ahamad, T., Alshehri, S.M., Kobayashi, N., Tominaka, S., Ide, Y., Ho Kim, J., and Yamauchi, Y.: Bimetallic metal–organic frameworks for controlled catalytic graphitization of nanoporous carbons. Sci. Rep. 6, 30295 (2016).CrossRefGoogle ScholarPubMed
Li, L., Ma, X., Chen, R., Wang, C., and Lu, M.: Nitrogen-containing functional groups-facilitated acetone adsorption by ZIF-8-derived porous carbon. Materials 11, 159 (2018).CrossRefGoogle ScholarPubMed
Lee, C.Y.: MOF-derived porous carbon materials for carbon dioxide capture. U.S. Patent No. 20180214849, A1, 2018: Available at: http://www.freepatentsonline.com/y2018/0214849.html.Google Scholar