Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-02T16:40:21.319Z Has data issue: false hasContentIssue false

Reduced thermal decomposition of OH-free LiNbO3 substrates even in a dry gas atmosphere

Published online by Cambridge University Press:  31 January 2011

Hirotoshi Nagata
Affiliation:
Optoelectronics Division, Sumitomo Osaka Cement Co., Ltd., 585 Toyotomi-cho, Funabashi-shi, Chiba 274, Japan
Toshihiro Sakamoto
Affiliation:
Optoelectronics Division, Sumitomo Osaka Cement Co., Ltd., 585 Toyotomi-cho, Funabashi-shi, Chiba 274, Japan
Hideki Honda
Affiliation:
Optoelectronics Division, Sumitomo Osaka Cement Co., Ltd., 585 Toyotomi-cho, Funabashi-shi, Chiba 274, Japan
Junichiro Ichikawa
Affiliation:
Optoelectronics Division, Sumitomo Osaka Cement Co., Ltd., 585 Toyotomi-cho, Funabashi-shi, Chiba 274, Japan
Eungi Min Haga
Affiliation:
Central Research Laboratories, Sumitomo Osaka Cement Co., Ltd., 585 Toyotomi-cho, Funabashi-shi, Chiba 274, Japan
Kaori Shima
Affiliation:
Central Research Laboratories, Sumitomo Osaka Cement Co., Ltd., 585 Toyotomi-cho, Funabashi-shi, Chiba 274, Japan
Nobuhiko Haga
Affiliation:
Faculty of Science, Himeji Institute of Technology, Kamigori-cho, Ako-gun, Hyogo 678–12, Japan
Get access

Abstract

A thermal diffusion process of Ti into a LiNbO3 substrate for optical waveguides has generally been carried out under a wet gas atmosphere in order to prevent undesirable Li outdiffusion. In this work, such thermal decomposition was confirmed to be significantly suppressed for an OH-free LiNbO3 substrate, even after a dry atmosphere annealing. No extra x-ray diffraction peak for LiNb3O8 was detected from the OH-free substrate after 10 h of annealing at 1000 °C in a dry O2. Furthermore, the surface morphology of this sample, and as well an unannealed one, were smooth. In a conventional LiNbO3 substrate containing many OH ions, subjected to a similar dry annealing, the presence of the LiNb3O8 phase and a surface coarsening were observed.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yurek, A. M., Suchoski, P. G., Merritt, S. W., and Leonberger, F. J., Optics / Photonics News, June, 26 (1995).Google Scholar
2.Suchoski, P. G. Jr., and Boivin, G. R., SPIE 1795 (Fiber Optic and Laser Sensor X), 38 (1992).Google Scholar
3.McCaughan, L., SPIE Critical Reviews of Optical Science and Technology CR45 (Integrated Optics and Optoelectronics), 15 (1993).Google Scholar
4.Pun, E. Y. B., SPIE Critical Reviews of Optical Science and Technology CR45 (Integrated Optics and Optoelectronics), 44 (1993).Google Scholar
5.Nagata, H. and Ichikawa, J., Opt. Eng. 34, 3284 (1995).Google Scholar
6.Novikov, D. V., Gog, T., Griebenow, M., Materlik, G., Baumann, I., and Sohler, W., Nucl. Instrum. Methods, Phys. Res. B 95, 342 (1995).Google Scholar
7.Huang, C., McCaughan, L., and Gill, D. M., J. Lightwave Technol. 12, 803 (1994).Google Scholar
8.Gill, D. M., Wright, J. C., and McCaughan, L., Appl. Phys. Lett. 64, 2483 (1994).CrossRefGoogle Scholar
9.Suche, H., Wessel, R., Westenhofer, S., Sohler, W., Bosso, S., Carmannini, C., and Corsini, R., Opt. Lett. 20, 596 (1994).CrossRefGoogle Scholar
10.Tocho, J. O., Jaque, F., Sole, J. G., Camarillo, E., Cusso, F., and Santiuste, J. E. M., Appl. Phys. Lett. 60, 3206 (1992).Google Scholar
11.Gill, D. M., Judy, A., McCaughan, L., and Wright, J.C., Appl. Phys. Lett. 60, 1067 (1992).CrossRefGoogle Scholar
12.Brinkmann, R., Sohler, W., and Suche, H., Electron. Lett. 27, 415 (1991)Google Scholar
13.Helmfrid, S., Arvidsson, G., and Webjorn, J., Electron. Lett. 27, 913 (1991).CrossRefGoogle Scholar
14.Miyazawa, S. and Noda, J., Oyobutsuri 48, 867 (1979) [in Japanese].Google Scholar
15.Jackel, J. L., Ramaswamy, V., and Lyman, S. P., Appl. Phys. Lett. 38, 509 (1981).Google Scholar
16.De Sario, M., Armenise, M. N., Canali, C., Carnera, A., Mazzoldi, P., and Celotti, G., J. Appl. Phys. 57, 1482 (1985).Google Scholar
17.McCoy, M. A., Dregia, S. A., and Lee, W. E., J. Mater. Res. 9, 2029 (1994).CrossRefGoogle Scholar
18.McCoy, M. A., Dregia, S. A., and Lee, W. E., J. Mater. Res. 9, 2040 (1994).CrossRefGoogle Scholar
19.Nagata, H., Takahashi, H., Takai, H., and Kougo, T., Jpn. J. Appl. Phys. 34, 606 (1995).CrossRefGoogle Scholar
20.Minakata, M., Yonai, T., and Yamada, K., CLEO'95, Baltimore, Maryland, May 21–26, 1995 (Opt. Soc. Am., Washington, DC), Paper CTuD1.Google Scholar
21.Smith, R. G., Fraser, D. B., Denton, R. T., and Rich, T. C., J. Appl. Phys. 39, 4600 (1968).CrossRefGoogle Scholar
22.Koide, A., Shimizu, H., and Saito, T., Jpn. J. Appl. Phys. 33, L957 (1994).CrossRefGoogle Scholar
23.Nagata, H., Ichikawa, J., Kobayashi, M., Hidaka, J., Honda, H., Kiuchi, K., and Sugamata, T., Appl. Phys. Lett. 64, 1180 (1994).CrossRefGoogle Scholar
24.Nagata, H., Ichikawa, J., Mitsugi, N., Sakamoto, T., Shinriki, T., Honda, H., and Kobayashi, M., Supplement to Optics / Photonics News 7 (May, 1996) (Opt. Soc. Am.).Google Scholar
25.Prokhorov, A. M. and Kuz'minov, Yu. S., Physics and Chemistry of Crystalline Lithium Niobate (Adam Hilger, Bristol, UK, 1990).Google Scholar
26.Kovacs, L., Wohlecke, M., Jovanovic, A., Polgar, K., and Kapphan, S., J. Phys. Chem. Solids 52, 797 (1991).CrossRefGoogle Scholar
27.Bollmann, W. and Stohr, H-J., Phys. Status Solidi (a) 39, 477 (1977).Google Scholar