Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T23:13:25.819Z Has data issue: false hasContentIssue false

Reduced YSZ deposition temperatures for YBa2Cu3Ox/YSZ thin films on sapphire

Published online by Cambridge University Press:  03 March 2011

J.H. Kroese
Affiliation:
Rome Laboratory, United States Air Force, Hanscom Air Force Base, Massachusetts 01731
A.J. Drehrman
Affiliation:
Rome Laboratory, United States Air Force, Hanscom Air Force Base, Massachusetts 01731
J.A. Horrigan
Affiliation:
Rome Laboratory, United States Air Force, Hanscom Air Force Base, Massachusetts 01731
Get access

Abstract

Thin films of Y-stabilized ZrO2 (YSZ) were deposited by RF diode sputtering on R-plane sapphire as a buffer layer for the deposition of YBa2Cu3O3 (YBCO). By increasing the partial pressure of oxygen in the sputter gas mixture from 20% to 50%, it was found that the substrate temperature required to obtain (100) oriented YSZ deposition could be lowered to 630 °C from 800 °C. This change is attributed to heating or mixing effects at the film surface, due to an increase in negative ion bombardment, which supplements the effects of external heating. Increases in the partial pressure of oxygen beyond 50% were found to be counterproductive. YBCO films, deposited on the YSZ buffer layers via magnetron sputtering, showed c-axis orientation and transition temperatures of 82 K. Orientation of both the YSZ and YBCO films was confirmed by x-ray diffraction and SEM characterization.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Char, K., Fork, D. K., Geballe, T. H., Laderman, S. S., Taber, R. C., Jacowitz, R. D., Bridges, F. F., Connell, G., and Boyce, J. B., Appl. Phys. Lett. 56, 785 (1990).CrossRefGoogle Scholar
2Fork, D. K., Fenner, D. B., Barrera, A., Phillips, J. M., Geballe, T. H., Connell, G. N., and Boyce, J. B., IEEE Trans. Appl. Superconductivity 1, 67 (1991).CrossRefGoogle Scholar
3Kellett, B. J., James, J. H., Gauzzi, A., Dwir, B., Paruna, D., and Reinhart, F. K., Appl. Phys. Lett 57, 1146 (1990).CrossRefGoogle Scholar
4Sasaura, M., Mukaida, M., and Miyazawa, S., Appl. Phys. Lett 57, 2728 (1990).CrossRefGoogle Scholar
5Meade, R. P., Mao, X. L., and Russo, R. E., Appl. Phys. Lett 59, 739 (1991).Google Scholar
6Berezin, A. B., Yuan, C. W., and DeLozanne, A. L., IEEE Trans. Magn. 27, 970 (1991).CrossRefGoogle Scholar
7Fork, D. K., Char, K., Bridges, F., Tahara, S., Lairsou, B., Boyce, J. B., Connell, G., and Geballe, T. H., Physica 162, 121 (1989).CrossRefGoogle Scholar
8Denhoff, M. W. and McCaffrey, J. P., J. Appl. Phys. 70(7), 3986 (1991).CrossRefGoogle Scholar
9Koren, G., Polturak, E., Fisher, B., Cohen, D., and Kimel, G., Appl. Phys. Lett 53, 2330 (1988).CrossRefGoogle Scholar
10Samara, G. A., J. Appl. Phys. 68, 4214 (1990).CrossRefGoogle Scholar
11Schmidt, H., Hradil, K., Hosier, W., Wersing, W., Gieres, G., and Seebock, R. J., Appl. Phys. Lett 59, 222 (1991).CrossRefGoogle Scholar
12Harshavardhan, K. S., Rajeswari, M., Hwang, D. M., Chen, C. Y., Sands, T., and Venkatesan, T., J. Mater. Res. 9, 270 (1994).CrossRefGoogle Scholar