Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-02T22:01:42.697Z Has data issue: false hasContentIssue false

Refractive index profile and attenuation measurement in KTiOPO4 waveguide by megaelectronvolt He ions

Published online by Cambridge University Press:  31 January 2011

Ke-Ming Wang
Affiliation:
Department of Physics, Shandong University, Jinan 250100, Shandong, People's Republic of China
Hiu Hu
Affiliation:
Department of Physics, Shandong University, Jinan 250100, Shandong, People's Republic of China
Fei Lu
Affiliation:
Department of Physics, Shandong University, Jinan 250100, Shandong, People's Republic of China
Feng Chen
Affiliation:
Department of Physics, Shandong University, Jinan 250100, Shandong, People's Republic of China
Bo-Rong Shi
Affiliation:
Department of Physics, Shandong University, Jinan 250100, Shandong, People's Republic of China
Yao-Gang Liu
Affiliation:
Institute of Crystal Materials, Shandong University, Jinan 250100, Shandong, People's Republic of China
Ding-Yu Shen
Affiliation:
MOE Laboratory of Heavy Ion Physics, Peking University, Beijing 100871, People's Republic of China
Xie-Mei Wang
Affiliation:
MOE Laboratory of Heavy Ion Physics, Peking University, Beijing 100871, People's Republic of China
Get access

Abstract

An optically polished x-cut KTiOPO4 crystal of size 22×6×1.5mm3 was implanted with 2.8-MeV He ions to a dose of 1.5 × 1016 ions/cm2 at room temperature to form a waveguide. The prism coupling method was used to measure the modes and the fiber probe technique was used to measure the attenuation in the KTiOPO4 waveguide. The refractive index profile, nz, in the KTiOPO4 waveguide was given based on the procedure by Chandler and Lama [P.J. Chandler and F.L. Lama, Optica Acta 33, 123 (1986)]. The waveguide attenuation measured was 2.57 dB/cm for m = 1 mode. After annealing at 260 °C for 30 min, there was no obvious change in the KTiOPO4 waveguide attenuation.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Liu, Y.S., Dentz, D., and Belt, R., Opt. Lett. 9, 76 (1984).CrossRefGoogle Scholar
2.Zumsteg, F.C., Bierlain, J.D., and Gier, T.E., J. Appl. Phys. 47, 4980 (1976).CrossRefGoogle Scholar
3.Bierlain, J.D., Ferretti, A., Brixner, L.H., and Hsu, W.Y., Appl. Phys. Lett. 50, 1216 (1987).CrossRefGoogle Scholar
4.White, J.M. and Heidrich, P.F., Appl. Optics 15, 151 (1976).CrossRefGoogle Scholar
5.Chandler, P.J. and Lama, F.L., Optica Acta 33, 123 (1986).CrossRefGoogle Scholar
6.Fluck, D., Hundt, D.H., Günter, P., Fleuster, M., and Buchal, C., J. Appl. Phys. 74, 6023 (1993).CrossRefGoogle Scholar
7.Tien, P.K., Ulrich, R., and Martin, R.J., Appl. Phys. Lett. 14, 291 (1976).CrossRefGoogle Scholar
8.Zhang, L., Chandler, P.J., Townsend, P.D., and Thomas, P.A., Electron. Lett. 28, 650 (1992).CrossRefGoogle Scholar
9.Zhang, L., Chandler, P.J., Townsend, P.D., Alwahabi, Z.T., and McCaffery, A.L., Electron. Lett. 28, 1478 (1992).CrossRefGoogle Scholar
10.Zhang, L., Chandler, P.J., Townsend, P.D., Alwahabi, Z.T., Pityana, S.T., and McCaffery, A.L., J. Appl. Phys. 73, 2695 (1993).CrossRefGoogle Scholar
11.Wang, K.M., Shi, B.R., Ding, P.J., Wang, W., Lanford, W.A., Zhou, Z., and Liu, Y.G., J. Mater. Res. 11, 1333 (1996).CrossRefGoogle Scholar
12.Wang, K.M., Lu, F., Hu, H., Shi, B.R., Xu, T.B., Zhu, P.R., and Liu, Y.G., Electron. Lett. 34, 2123 (1998).CrossRefGoogle Scholar
13.Wang, K.M., Lu, F., Meng, M.Q., Shi, B.R., Li, W., Wang, F.X., Sheng, D.Y., and Cue, N., Jpn. J. Appl. Phys. 37, L1055 (1998).CrossRefGoogle Scholar